• Title/Summary/Keyword: Character Detection

Search Result 249, Processing Time 0.021 seconds

A Method for Automatic Detection of Character Encoding of Multi Language Document File (다중 언어로 작성된 문서 파일에 적용된 문자 인코딩 자동 인식 기법)

  • Seo, Min Ji;Kim, Myung Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.170-177
    • /
    • 2016
  • Character encoding is a method for changing a document to a binary document file using the code table for storage in a computer. When people decode a binary document file in a computer to be read, they must know the code table applied to the file at the encoding stage in order to get the original document. Identifying the code table used for encoding the file is thus an essential part of decoding. In this paper, we propose a method for detecting the character code of the given binary document file automatically. The method uses many techniques to increase the detection rate, such as a character code range detection, escape character detection, character code characteristic detection, and commonly used word detection. The commonly used word detection method uses multiple word database, which means this method can achieve a much higher detection rate for multi-language files as compared with other methods. If the proportion of language is 20% less than in the document, the conventional method has about 50% encoding recognition. In the case of the proposed method, regardless of the proportion of language, there is up to 96% encoding recognition.

Character Region Detection in Natural Image Using Edge and Connected Component by Morphological Reconstruction (에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상의 문자영역 검출)

  • Gwon, Gyo-Hyeon;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • Characters in natural image are an important information with various context. Previous work of character region detection algorithms is not detect of character region in case of image complexity and the surrounding lighting, similar background to character, so this paper propose an method of character region detection in natural image using edge and connected component by morphological reconstructions. Firstly, we detect edge using Canny-edge detector and connected component with local min/max value by morphological reconstructed-operation in gray-scale image, and labeling each of detected connected component elements. lastly, detected candidate of text regions was merged for generation for one candidate text region, Final text region detected by checking the similarity and adjacency of neighbor of text candidate individual character. As the results of experiments, proposed algorithm improved the correctness of character regions detection using edge and connected components.

Text Region Detection using Adaptive Character-Edge Map From Natural Image (자연영상에서 적응적 문자-에지 맵을 이용한 텍스트 영역 검출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1135-1140
    • /
    • 2007
  • This paper proposes an edge-based text region detection algorithm using the adaptive character-edge maps which are independent of the size of characters and the orientation of character string in natural images. First, labeled images are obtained from edge images and in order to search for characters, adaptive character-edge maps by way grammar are applied to labeled images. Next, selected label images are clustered as for distance of its neighbors. And then, text region candidates are obtained. Finally, text region candidates are verified by using the empirical rules and horizontal/vertical projection profiles based on the orientation of text region. As the results of experiments, a text region detection algorithm turned out to be robust in the matter of various character size, orientation, and the complexity of the background.

  • PDF

A Study on Extraction of text region using shape analysis of text in natural scene image (자연영상에서 문자의 형태 분석을 이용한 문자영역 추출에 관한 연구)

  • Yang, Jae-Ho;Han, Hyun-Ho;Kim, Ki-Bong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we propose a method of character detection by analyzing image enhancement and character type to detect characters in natural images that can be acquired in everyday life. The proposed method emphasizes the boundaries of the object part using the unsharp mask in order to improve the detection rate of the area to be recognized as a character in a natural image. By using the boundary of the enhanced object, the character candidate region of the image is detected using Maximal Stable Extermal Regions (MSER). In order to detect the region to be judged as a real character in the detected character candidate region, the shape of each region is analyzed and the non-character region other than the region having the character characteristic is removed to increase the detection rate of the actual character region. In order to compare the objective test of this paper, we compare the detection rate and the accuracy of the character region with the existing methods. Experimental results show that the proposed method improves the detection rate and accuracy of the character region over the existing character detection method.

A Study on Edge Detection Algorithm for Character Recognition (문자인식을 위한 에지검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Hwang, Yeong-Yeun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.792-794
    • /
    • 2014
  • Character recognition is an image processing technique for obtaining the character information such as documents and automobile license plate and for this edge detection methods are commonly used. The previous edge detection methods are mostly applying the weighted value mask on the image and because it applies the same mask to the entire areas of the image, the processing results are somewhat insufficient. Therefore, this paper has proposed an edge detection algorithm by applying the weighted value mask considering the distribution and location of pixels to be suitable for the character recognition.

  • PDF

Character Region Detection Using Structural Features of Hangul Vowel (한글 모음의 구조적 특징을 이용한 문자영역 검출 기법)

  • Park, Jong-Cheon;Lee, Keun-Wang;Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.872-877
    • /
    • 2012
  • We proposes the method to detect the Hangul character region from natural image using topological structural feature of Hangul grapheme. First, we transform a natural image to a gray-scale image. Second, feature extraction performed with edge and connected component based method, Edge-based method use a Canny-edge detector and connected component based method applied the local range filtering. Next, if features are not corresponding to the heuristic rule of Hangul character, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul character region from mobile image.

Character Region Detection Using Structural Features of Hangul & English Characters in Natural Image (자연영상에서 한글 및 영문자의 구조적 특징을 이용한 문자영역 검출)

  • Oh, Myoung-Kwan;Park, Jong-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1718-1723
    • /
    • 2014
  • We proposes the method to detect the Hangul and English character region from natural image using structural feature of Hangul and English Characters. First, we extract edge features from natural image, Next, if features are not corresponding to the heuristic rule of character features, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. English character region detected by edge features of English characters. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul and English characters region from natural image.

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

Character Detection in Complex Scene Image using Harris Corner Detector (해리스 코너 검출기를 이용한 배경 영상에서의 문자 검출)

  • Kim, Min-ha;Kim, Mi-kyung;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.97-100
    • /
    • 2013
  • In this paper, we propose a detection method of the character rather than cursive, containing many components of the vertical and horizontal direction in complex background image. The characters have many dense corners but the background has few sparse corners. So we use harris corner detector and cluster the corners by using the position of the detected corners for detecting character regions. To merge or filter character regions, we analysis a histogram of gray image of character regions. In each improved region, we compare histograms of R, G, B channels to detect characters.

  • PDF

Hangeul detection method based on histogram and character structure in natural image (다양한 배경에서 히스토그램과 한글의 구조적 특징을 이용한 문자 검출 방법)

  • Pyo, Sung-Kook;Park, Young-Soo;Lee, Gang Seung;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In this paper, we proposed a Hangeul detection method using structural features of histogram, consonant, and vowel to solve the problem of Hangul which is separated and detected consonant and vowel The proposed method removes background by using DoG (Difference of Gaussian) to remove unnecessary noise in Hangul detection process. In the image with the background removed, we converted it to a binarized image using a cumulative histogram. Then, the horizontal position histogram was used to find the position of the character string, and character combination was performed using the vertical histogram in the found character image. However, words with a consonant vowel such as '가', '라' and '귀' are combined using a structural characteristic of characters because they are difficult to combine into one character. In this experiment, an image composed of alphabets with various backgrounds, an image composed of Korean characters, and an image mixed with alphabets and Hangul were tested. The detection rate of the proposed method is about 2% lower than that of the K-means and MSER character detection method, but it is about 5% higher than that of the character detection method including Hangul.