• Title/Summary/Keyword: Char reaction

Search Result 130, Processing Time 0.024 seconds

Synthesis and properties of PBO precursors having bulky groups and ether linkages in the main chain (주사슬에 벌키그룹과 에테르 연결고리를 갖는 PBO 전구체의 합성 및 특성)

  • Yoon, Doo-Soo;Kim, Hee-Sun;Choi, Jae-Kon;Hong, Wan-Hae
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.271-280
    • /
    • 2008
  • Aromatic polyhydroxyamides (PHAs) having bulky groups and ether linkages in the polymer main chain were synthesized by the low temperature solution polycondensation reaction. FT-IR, $^{1}H-NMR$, DSC, and TGA were used to study the properties of these polymers. The PHAs were converted into polybenzoxazoles (PBOs) by a thermal cyclization reaction, and endothermic peaks were observed in the range of $220{\sim}400^{\circ}C$. The introduction of the ether and bulky groups in the main chain improved the solubility of the PHAs in aprotic solvents such as DMSO and DMF, but the PBOs were nearly insoluble in common solvents. All the PBOs, except for PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, and PBO 6 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, exhibited $T_g's$ in the range from 149 to $217^{\circ}C$ by DSC. The thermogravimetric analyses indicated that most of the PBOs were thermally stable up to $400^{\circ}C$ in nitrogen. Maximum weight loss temperatures of PHA 5 and PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring were $707^{\circ}C$ and $683^{\circ}C$, respectively, which were the hightest temperatures among the corresponding copolymers. The PBOs in nitrogen exhibited relatively high char yields in the range of $63{\sim}70%$ at $900^{\circ}C$.

Numerical and Experimental Study on the Coal Reaction in an Entrained Flow Gasifier (습식분류층 석탄가스화기 수치해석 및 실험적 연구)

  • Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.

Study of Oil Palm Biomass Resources (Part 2) - Manufacturing Characteristics of Pellets Using Oil Palm Biomass- (오일팜 바이오매스의 자원화 연구 II - 오일팜 바이오매스의 펠릿 제조 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Kim, Sung-Ho;Sim, Sung-Woong;Yim, Su-Jin;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFB) and palm kernel shell (PKS) was used as raw materials for making pellets. Hardwood sawdusts were also mixed with EFB and PKS for making pellets. For improving a bad forming behavior in a pelletizer, 1 to 3 per cent of corn starch based on oven-dried weight biomass was added. The starch contributed to the decrease of dust generation in addition to the improvement of forming capability during pellet forming. Heating values of every pellets made of EFB and PKS were higher than 4,300 kcal/kg for the first grade pellet, irrespective of addition of sawdusts. However, the pellets made of EFB and PKS had ash contents over 3 per cent, which made it impossible to be applied for home use. Instead, they could be applied for industrial use. For studying their combustion characteristics, the pellets from the mixtures of EFB, PKS and sawdusts were analyzed using thermal gravimetric analyzer (TGA). From the TGA results, thermal decomposition of EFB and PKS occurred following three including endothermic reaction and dehydration, devolatilization of the major chemical components, and finally combustion of residual lignin and char.

Characteristics of Bio-oil derived from Quercus Acutissima in a Fluidized Bed Pyrolyser (유동층 열분해로에 의하여 생산된 상수리나무 바이오오일의 특성)

  • Lee Sun-Hoon;Eom Min-Seop;Yoo Kyung-Seun;Lee Young-Soo;Kim Nam-Chan;Lee See-Hoon;Lee Jae-Goo;Kim Jae-Ho
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.3-11
    • /
    • 2006
  • Fast pyrolysis of Quercus acutissima was carried out in a fluidized bed pyrolyser and then the physicochemical properities of obtained bio-oil were analyzed using GC/MS. The yields of bio-oil of Quercus acutissima and Larix leptolepis from a fluidized bed pyrolyzer were maximized at $350^{\circ}C\;and\;400^{\circ}C$, respectively. This is due to the difference or cellulose content between the two tree species. Above the optimum temperature, the yields of char and oil decreased as the reaction temperature increased, but the yield of gas-phase and water fraction increased. It is concluded that this phenomenon is occured by secondary pyrolysis in the free board. The feeding rate of the sample in a fluidized bed pyrolyser did not affect the yields and composition of products, because of a sufficient mixing between bed materials and sand.

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.

Preparation and Characterization of Polyurethane Flame-Retardant Coatings Containing Trichloro Lactone Modified Polyesters (트리클로로 락톤 변성폴리에스테르를 함유한 폴리우레탄 난연도료의 제조 및 난연특성)

  • 정충호;박형진;김성래;우종표;김명수
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.200-208
    • /
    • 2002
  • Two-component polyurethane flame-retardant coatings were prepared by blending trichloro lactone modified polyesters (TAPTS) and isocyanate, Desmodur IL. Polycondensation reaction of trichlorobenzoic acid (TBA) as a flame-retardant component, and adipic acid with trimethylolpropane, polycaprolactone 0201, and 1,4-butanediol gave the corresponding TAPTs. The content of TBA was adjusted from 10 to 30 wt% in our experiment. It was found that various properties of these new flame-retardant coatings were comparable to other non-flame-retardant coatings. We also carried out three different tests for the measurement of flammability of flame -retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TBA were determined as 'no burn'. The results of flammability test for the coatings with 20 and 30 wt% of TBA contents indicated the limiting oxygen index (LOI) values of 25% and 27% respectively, which implied relatively good flame retardancy. They also showed the char length of 3.6-5.2 cm according to $45^{\circ}$ Meckel burner test, which can be classified as the first grade flame-retardant coatings.

Ionic Liquid as a Solvent and the Long-Term Separation Performance in a Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Char, Kook-Heon;Kim, Jong-Hak;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2007
  • The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.

Synthesis, Characterization, Thermal Stability and Conductivity of New Schiff Base Polymer Containing Sulfur and Oxygen Bridges (황과 산소를 함유하는 새로운 Schiff Base 고분자의 합성, 특성분석, 열적 안정성과 전도성)

  • Culhaoglu, Suleyman;Kaya, Ismet
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.225-234
    • /
    • 2015
  • In this study, we proposed to synthesize thermally stable, soluble and conjugated Schiff base polymer (SbP). For this reason, a specific molecule namely 4,4'-thiodiphenol which has sulfur and oxygen bridge in its structure was used to synthesize bi-functional monomers. Bi-functional amino and carbonyl monomers namely 4,4'-[thio-bis(4,1-phenyleneoxy)] dianiline (DIA) and 4,4'-[thiobis(4,1-phenyleneoxy)]dibenzaldehyde (DIB) were prepared from the elimination reaction of 4,4'-thiodiphenol with 4-iodonitrobenzene and 4-iodobenzaldehyde, respectively. The structures of products were confirmed by elemental analysis, FTIR, $^1H$ NMR and $^{13}C$ NMR techniques. The molecular weight distribution parameters of SbP were determined by size exclusion chromatography (SEC). The synthesized SbP was characterized by solubility tests, TG-DTA and DSC. Also, conductivity values of SbP and SbP-iodine complex were determined from their solid conductivity measurements. The conductivity measurements of doped and undoped SbP were carried out by Keithley 2400 electrometer at room temperature and atmospheric pressure, which were calculated via four-point probe technique. When iodine was used as a doping agent, the conductivity of SbP was observed to be increased. Optical band gap ($E_g$) of SbP was also calculated by using UV-Vis spectroscopy. It should be stressed that SbP was a semiconductor which had a potential in electronic and optoelectronic applications, with fairly low band gap. SbP was found to be thermally stable up to $300^{\circ}C$. The char of SbP was observed 29.86% at $1000^{\circ}C$.

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

A Study of Coal Gasification Process Modeling (석탄가스화 공정 모델링에 관한 연구)

  • Lee, Joong-Won;Kim, Mi-Yeong;Chi, Jun-Hwa;Kim, Si-Moon;Park, Se-Ik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.