• Title/Summary/Keyword: Channel parameter

Search Result 663, Processing Time 0.024 seconds

Conjugated heat transfer of the simulated module on the bottom of a inclined channel (경사진 채널 밑면에 부착된 모사모듈의 복합열전달)

  • Lee, Jin-Ho;Cho, Seong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.471-476
    • /
    • 2001
  • The characteristics of conjugated heat transfer in the inclined channel was experimentally investigated. The simulated module is attached to the bottom of the inclined channel and is heated with constant heat flux. The experimental parameters of this study are input power (Q = 3, 7W), inlet air velocity ($V_{i}=0.1{\sim}0.9m/s$) and inclined channel angle (${\varphi}=0{\sim}90^{\circ}$). The results show that input power was most effective parameter on the temperature differences between module and air. As the inclined channel angle increases, the temperatures of the module are increased. And we obtained the best condition on the conductive board when ${\varphi}=0^{\circ}$.

  • PDF

A Study on the Performance Analysis and Comparision of Channel Access Protocols in LAN (LAN에서 채널 접속프로토콜의 성능해석 및 비교에 관한 연구)

  • 김평육;김정선;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.6
    • /
    • pp.402-410
    • /
    • 1986
  • The Media Access Control(MAC) Technologies in IEEE 802 Local Area Network(LAN) reference model include CSMA/CD, Token Ring and Token Bus methodes. The channel throughput of LAN can be affected by some parameters such as channel length, transmission rate and packet size, and station numbers. In this paper, the effect of these parameters to channel throughput are analyzed by normalized parameters. And the token ring and token bus method are analyzed by using the normalized parameter, and relatinonship bwtween channel thorughput and parameters is discussed. Finally, results are compared.

  • PDF

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

A convergence analysis of a PLL for a digital recording channel with an adaptive partial response equalizer (적응 부분응답 등화기를 갖는 디지탈 기록 채널의 PLL 수렴 특성 분석)

  • 오대선;양원영;조용수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.45-53
    • /
    • 1996
  • In this paper, the convergence behavior of timing phase when an adaptive partial response equalizer and decision-directed type of a PLL work together in a digital recording channel is described. The phenomena of getting biased in timing phase when the convergence parameter of an adaptive partial response equalizer and timing recovery constant of a PLL are not selected properly is introduced. The phenomena, occurring due to perturbation of timing phase, are analyzed, by computer simulation and the region of ocnvergence for timing phase is discussed. Also, a method to overcome the phenomena using a variable step-size parameter is described.

  • PDF

Kernel Regression with Correlation Coefficient Weighted Distance (상관계수 가중법을 이용한 커널회귀 방법)

  • Shin, Ho-Cheol;Park, Moon-Ghu;Lee, Jae-Yong;You, Skin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.588-590
    • /
    • 2006
  • Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection) have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system is the model giving an estimate of the true process parameter value against individual measurements. This model gives process parameter estimate calculated as a function of other plant measurements which can be used to identify small sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement of auto-associative kernel regression by introducing a correlation coefficient weighting on kernel distances. The prediction performance of the developed method is compared with conventional auto-associative kernel regression.

  • PDF

Single-Channel Non-Causal Speech Enhancement to Suppress Reverberation and Background Noise

  • Song, Myung-Suk;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.487-506
    • /
    • 2012
  • This paper proposes a speech enhancement algorithm to improve the speech intelligibility by suppressing both reverberation and background noise. The algorithm adopts a non-causal single-channel minimum variance distortionless response (MVDR) filter to exploit an additional information that is included in the noisy-reverberant signals in subsequent frames. The noisy-reverberant signals are decomposed into the parts of the desired signal and the interference that is not correlated to the desired signal. Then, the filter equation is derived based on the MVDR criterion to minimize the residual interference without bringing speech distortion. The estimation of the correlation parameter, which plays an important role to determine the overall performance of the system, is mathematically derived based on the general statistical reverberation model. Furthermore, the practical implementation methods to estimate sub-parameters required to estimate the correlation parameter are developed. The efficiency of the proposed enhancement algorithm is verified by performance evaluation. From the results, the proposed algorithm achieves significant performance improvement in all studied conditions and shows the superiority especially for the severely noisy and strongly reverberant environment.

The Performance Evaluation of Extended Phase Recovery Algorithm for OQPSK in Satellite Channel (위성 채널에서 확장된 OQPSK 위상동기 알고리즘 성능평가)

  • 김명섭;송윤정;정지원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.634-640
    • /
    • 2000
  • This paper proposes a new extended decision directed-decision estimated phase recovery algorithm based on maximum likelihood parameter estimation for OQPSK. In this scheme, comparing conventional one, the data dependent noise of phase recovery loop is reduced by inserting filter with 2 taps to in-phase and quadrature-phase channel respectively before phase detector. The proposed scheme is compared to conventionalscheme and OQPSK in aspect to BER(Bit Error Rate) and phase error according to the roll-off factor of baseband filter, the output back-offs of nonlinear satellite channel, and loop bandwidth.

  • PDF

A Novel Active User Identification Method for Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.212-216
    • /
    • 2022
  • Space based constellation network is a kind of ad hoc network in which users are self-organized without center node. In space based constellation network, users are allowed to enter or leave the network at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the network depends on how accurately this parameter is estimated. The so-called problem of active user identification, which consists of determining the number and identities of users transmitting in space based constellation network is discussed and a novel active user identification method is proposed in this paper. Active user identification code generated by transmitter address code and receiver address code is used to spread spectrum. Subspace-based method is used to process received signal and judgment model is established to identify active users according to the processing results. The proposed method is simulated under AWGN channel, Rician channel and Rayleigh channel respectively. Numerical results indicate that the proposed method obtains at least 1.16dB Eb/N0 gains compared with reference methods when miss alarm rate reaches 10-3.

Pareto Optimized EDCA Parameter Control for Wireless Local Area Networks

  • Kim, Minseok;Oh, Wui Hwan;Chung, Jong-Moon;Lee, Bong Gyou;Seo, Myunghwan;Kim, Jung-Sik;Cho, Hyung-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3458-3474
    • /
    • 2014
  • The performance of IEEE 802.11e enhanced distributed channel access (EDCA) is influenced by several interactive parameters that make quality of service (QoS) control complex and difficult. In EDCA, the most critical performance influencing parameters are the arbitration interframe space (AIFS) and contention window size (CW) of each access category (AC). The objective of this paper is to provide a scheme for parameter control such that the throughput per station as well as the overall system throughput of the network is maximized and controllable. For this purpose, a simple and accurate analytical model describing the throughput behavior of EDCA networks is presented in this paper. Based on this model, the paper further provides a scheme in which a Pareto optimal system configuration is obtained via an appropriate CW control for a given AIFS value, which is a different approach compared to relevant papers in the literature that deal with CW control only. The simulation results confirm the effectiveness of the proposed method which shows significant performance improvements compared to other existing algorithms.

Joint Blind Parameter Estimation of Non-cooperative High-Order Modulated PCMA Signals

  • Guo, Yiming;Peng, Hua;Fu, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4873-4888
    • /
    • 2018
  • A joint blind parameter estimation algorithm based on minimum channel stability function aimed at the non-cooperative high-order modulated paired carrier multiple access (PCMA) signals is proposed. The method, which uses hierarchical search to estimate time delay, amplitude and frequency offset and the estimation of phase offset, including finite ambiguity, is presented simultaneously based on the derivation of the channel stability function. In this work, the structure of hierarchical iterative processing is used to enhance the performance of the algorithm, and the improved algorithm is used to reduce complexity. Compared with existing data-aided algorithms, this algorithm does not require a priori information. Therefore, it has significant advantage in solving the problem of blind parameter estimation of non-cooperative high-order modulated PCMA signals. Simulation results show the performance of the proposed algorithm is similar to the modified Cramer-Rao bound (MCRB) when the signal-to-noise ratio is larger than 16 dB. The simulation results also verify the practicality of the proposed algorithm.