• Title/Summary/Keyword: Channel optimization

Search Result 566, Processing Time 0.025 seconds

A numerical study for optimizing the thermal and flow performance in the channel of plate heat exchanger with dimples (딤플이 있는 판형 열교환기 관내측 열유동 최적화)

  • 이관수;시종민;정길완
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.700-708
    • /
    • 1999
  • The optimum dimple shape and arrangement in the channel of a plate heat exchanger with staggered dimples are proposed in this study. Four important geometric parameters are selected as design variables, the pressure drop and heat transfer characteristics are examined in the channel of plate heat exchangers. The optimization is accomplished by minimizing the global criterion function which consists of the correlations of Nusselt number and pressure drop. The optimum geometric parameters were found at the dimensionless dimple distance (L) of 0.272, the dimensionless dimple angle ($\beta$) of 0.44, the dimensionless dimple volume (V) of 0.106 and the dimensionless dimple pitch (G) of 0.195. It is found that the heat transfer and pressure drop of the optimum model are increased by approximately 227.9% and 32.9%, respectively, compared to those of the base model.

  • PDF

Evaluation of Optimization Models for a Dimpled Channel to Enhance Heat Transfer (딤플 유로의 열전달 증진을 위한 최적화모델 비교)

  • Shin, Dong-Yoon;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2552-2557
    • /
    • 2007
  • Shape optimization of an internal cooling passage with staggered dimples on single surface is performed and performances of surrogates are evaluated in this paper. Optimizations are performed so that turbulent heat transfer can be enhanced compromising with pressure loss due to friction. The three-dimensional governing differential equations have been solved to find the overall Nusselt number and friction factor which are related to the objective functions of this problem. Three design variables were selected among the dimensionless geometric variables. Basic surrogate models such as second order polynomial response surface approximation (RSA), Kriging meta-modeling technique, radial basis neural network (RBNN), and derived press based averaged (PBA) surrogate model are constructed. The optimal points are searched from the above constructed surrogates by sequential quadratic programming (SQP). It is shown that use of multiple surrogates can increase the robustness in prediction of better design with minimum computational cost.

  • PDF

Optimization of the Channel of a Plate Heat Exchanger wits Ribs (리브가 있는 판형 열교환기 관내부 최적화)

  • 이관수;양동근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • In this paper, the optimum shape and arrangement of ribs in the channel of a plate heat exchanger are studied. The following dimensionless geometric parameters of ribs are selected as design variables: rib height ($H_R$), angle of attack ($\beta$), rib pitch ($P_R$), rib distance (L) and aspect ratio of rib (AR). The optimization is performed by minimizing the objective function consisting of the Nusselt number and the friction factor. The optimal values of design variables are as follows: $H_R$=0.263, $\beta$=0.290, $P_R$=3.142, L: 3.954, AR=0.342. The pressure drop and the heat transfer of the optimum model, compared to those of the reference model, are increased by 15.1% and 41.6%, respectively.

Design Optimization of Dimple Shape to Enhance Heat Transfer (열전달 증진을 위한 딤플형상의 최적설계)

  • Choi, Ji-Yong;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.285-288
    • /
    • 2004
  • This study presents a numerical procedure to optimize the shape of dimple surface to enhance turbulent heat transfer in rectangular channel. The response surface based optimization method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to -dimple print diameter ratio, channel height- to- dimple print diameter ratio. and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of heat transfer coefficient and friction drag coefficient with a weighting factor. Full factorial method is used to determine the training points as a mean of design of experiment.

  • PDF

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

Optimization of Channel Capacity in MIMO Systems

  • Pham Van-Su;Le Minh Tuan;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.172-175
    • /
    • 2005
  • In this paper, a new method to get the optimum channel capacity of a Multiple-Input Multiple­Output (MIMO) system is presented. The proposed method exploits the diagonal structure of channel matrix to maximize the channel capacity. The diagonal format of the channel matrix is formed by multiplying the transmitted signal with the pre-compensated channel PCC) matrix. Numerical simulations show that the proposed method exploiting the diagonal structure of channel matrix could significantly increase the system capacity compared with the system without applying the diagonal structure of channel matrix.

Design and Optimization of 4-Channel SENSE Head Coil

  • 오정민;김용권;류연철;오창현
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.16-16
    • /
    • 2003
  • Purpose: Recently, a major interesting method of fast MR imaging is sensitivity encoding (SENSE) using arrays of multiple receiver coils. In this study, we have designed and implemented a 4-channel head array coil and optimized the structure and arrangement of the coil to improve the performance.

  • PDF

Joint Channel Assignment and Multi-path Routing in Multi-radio Multi-channel Wireless Mesh Network

  • Pham, Ngoc Thai;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.824-832
    • /
    • 2009
  • Multi-radio multi-channel Wireless Mesh Network requires an effective management policy to control the assignment of channels to each radio. We concentrated our investigation on modeling method and solution to find a dynamic channel assignment scheme that is adapted to change of network traffic. Multi-path routing scheme was chosen to overwhelm the unreliability of wireless link. For a particular traffic state, our optimization model found a specific traffic distribution over multi-path and a channel assignment scheme that maximizes the overall network throughput. We developed a simple heuristic method for channel assignment by gradually removing clique load to obtain higher throughput. We also presented numerical examples and discussion of our models in comparison with existing research.

  • PDF

A Study on Reverse Link Power Ratio and Channel Estimation Length Optimization of Synchronous DS-CDMA System (동기식 DS-CDMA 시스템의 역방향 채널 전력비와 채널 추정 길이의 최적화에 관한 연구)

  • 박진홍;강성진;강병권;김선형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.222-225
    • /
    • 2000
  • In this paper, a synchronous CDMA system accepted for the cdma2000 standard is simulated to propose optimized reverse link power ratio and channel estimation lengths. Differently from IS-95, the pilot channel is used in the proposed system to estimate fading channel, so optimized estimation lengths are needed. Therefore, in this paper we analyze optimized estimation lengths which is needed to decide the power ratio of pilot channel and fundamental channel. From fixed estimation lengths, we calculate FER with various power ratio values.

  • PDF

Effect of Fiber Dispersion and Self-phase Modulation in Multi-channel Subcarrier Multiplexed Optical Signal Transmission

  • Kim, Kyoung-Soo;Jeong, Ji-Chai;Lee, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • We investigated the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) in multi-channel subcarrier multiplexed (SCM) optical transmission systems. We theoretically analyzed the transmission characteristics of the SCM signals with the effect of SPM and chromatic dispersion in a single-mode optical fiber by numerical simulations based on the nonlinear Schrodinger equation. The numerical simulation results revealed that the effect of fiber dispersion and SPM could occur independently between subcarrier channels in two-channel SCM systems for small optical modulation index (OMI) and large channel spacing. However, for large OMI, small channel spacing, and large fiber launching power, we found a performance degradation of the two-channel system compared to that of a single-channel system. These parameters are therefore important for the optimization of multi-channel SCM systems applicable to radio over fiber networks.