• Title/Summary/Keyword: Channel number

Search Result 2,716, Processing Time 0.03 seconds

3-D Numerical Analysis on a low Reynolds Number Mixed Convection in a Horizontal Rectangular Channel (수평 사각채널 내 저 레놀즈수 혼합대류 유동의 3차원 수치해석)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.210-215
    • /
    • 2005
  • A three-dimensional numerical simulation is performed to investigate on a low Reynolds number mixed convection in a horizontal rectangular channel with the upper part cooled and the lower part heated uniformly. The three-dimensional governing equations are solved using a finite volume method. For convective term, the central differencing scheme is used and for the pressure correction, the PISO algorithm is used. Solutions are obtained for A=4, Pr=0.72, 10, 909, the Reynolds number ranging from $2.1{\times}10^{-2}$ to $1.2{\times}10^{-1}$, the Rayleigh number is $3.5{\times}10^4$. It is found that vortex roll structures of mixed convection in horizontal rectangular channel can be classified into three roll structures which affected by Prandtl number and Reynolds number.

  • PDF

Experimental Study on the Channel Type Heat Sink to Maintain Proper Temperature Cycle of Bio-Sample (바이오 시료의 적정온도 사이클 유지를 위한 채널형 히트싱크에 대한 실험적 연구)

  • Jeong-Gyu Hwang;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.183-191
    • /
    • 2023
  • This study was conducted experimentally to investigate the surface temperature of the heat sink, the air temperature in the flow channel and the sample temperature by changing the channel number of channel type heat sink and the air flow rate when heating and cooling the bio sample. The target temperature of the sample was 15℃ or less as the minimum value and 82℃ or more as the maximum value. In this study, the channel number of the heat sink(N = 1, 2, 4, 5, 10) and the air flow rate(Q=25, 42, 54m3/min) were varied. The bio sample was replaced with water, and the volume of water is 4mL. The size of the heat sink is 80x73x150mm and the material is aluminum. When cooling the sample, the surface temperature, the air temperature and the sample temperature were highly dependent on the number of channels and the flow rate. However, when the sample is heated, the surface temperature, air temperature and sample temperature do not depend on the number of channels and the flow rate. It was found that the conditions for satisfying the minimum temperature of 15℃ or less when cooling the sample were the number of channels N≥5 and the flow rate Q≥42m3/min. When heating the sample, the conditions to satisfy the maximum temperature of 82℃ or more are the number of channels N≤5 and the air flow rate Q≤42m3/min.

Effects of the Inclined Angles of Channel on Thermal Stability of Electronic Components (채널의 경사각이 전자부품의 열적 안정성에 미치는 영향)

  • 추홍록;상희선;유재환
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • An experimental study was carried out to investigate the effects of inclined angles of channel on thermal stability of electronic components. In this study, it is focused on the natural convection heat transfer from an inclined parallel channel with discrete protruding heat sources. The material used for the inclined parallel channel was epoxy-resin, while air as the cooling fluid. Heat transfer phenomena for inclined angles of $\psi$=$15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$ and for the range of $9.52{\times}10^5/ were analyzed. The thermal fields in the channel were visualized by Mach-Zehnder interferometer. Also, local temperatures were measured by thermocouples along the channel wall and heat sources surface. As a result, for the range of $4.29{\times} 10^5/, a useful correlation of mean Nusselt number was proposed as a function of modified channel Rayleigh number.

  • PDF

The Performance Analysis of System by the Number of Channel at Hierarchical Cellular System (계층 셀룰라 시스템에서 채널 수에 따른 시스템 성능 분석)

  • Seong, Hong-Seok;Lim, Seung-Ha;Lee, Jong-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.469-470
    • /
    • 2007
  • We used the non-reversible hierarchical scheme and the fixed channel assignment scheme for the strategy of call processing at hierarchical cellular system. We analyzed the performance of system according to the number of channel assigned at macrocell out of the usable channel at global system. Microcell is assigned the channel excepted the channel assigned at macrocell. The more the channel was aigned at macrocell, the more decreased the blocking probability became. The blocking probability of microcell had similar trend.

  • PDF

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns (유로형상 변화에 따른 고분자 전해질 연료전지(PEMFC)의 성능 및 전달특성에 대한 3차원 수치 해석적 연구)

  • Lee, Pil-Hyong;Cho, Son-An;Choi, Seong-Hun;Hwang, Sang-Soon
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.78-85
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and air and removal of water generated from electrochemical reaction in diffusion layer. In this study. fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode channel together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in interdigitated flow channel. And effects of temperature and stoichiometric number on performance can be calculated and analyzed as well. Nomenclature.

  • PDF

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.

Flow of a low concentration polyacrylamide fluid solution in a channel with a flat plate obstruction at the entry

  • Kabir, M.A.;Khan, M.M.K.;Rasul, M.G.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.63-73
    • /
    • 2004
  • Flow in a channel with an obstruction at the entry can be reverse, stagnant or forward depending on the position of the obstruction. These flow phenomena have potential applications in the control of energy and various flows in process engineering. Parameters that affect this flow inside and around the test channel are the gap (g) between the obstruction geometry and the test channel, the Reynolds number (Re) and the length (L) of the test channel. The influence of these parameters on the flow behavior was investigated using a flat plate obstruction at the entry of the channel. A low concentration polyacrylamide solution (0.018% by weight) showing a powerlaw fluid behavior was used as the fluid in this investigation. The flow phenomena were investigated by the velocity measurement and the flow visualization and their results were compared with numerical simulation. These results of low concentration polyacrylamide solution are also compared with the results of water published elsewhere (Kabir et al., 2003). The maximum reverse flow inside the test channel observed was 20% - 30% of the outside test channel velocity at a g/w (gap to width) ratio of 1 for Reynolds numbers of 1000 to 3500. The influence of the test channel length (L) and the Reynolds number (Re) on the velocity ratio ($V_i$/$V_o$: inside velocity/outside velocity in the test channel) are also presented and discussed here.

Error Rate Performance of DS-CDMA/DQPSK Signal in Indoor Radio Channel Adopting ARQ Scheme (실내 무선 채널에서 ARQ 기법을 채용하는 DS-CDMA/DQPSK 신호의 오율특성)

  • 오창헌;고봉진;조성준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.11-20
    • /
    • 1994
  • The error rate equation of DS-CDMA/DQPSK skgnal adopting ARQ scheme has been derived in indoor radio channel which is characterized by AWGN, multi-user interference (MUI) and Rician fading, Using the derived equation the error performance has been evaluated and shown in figures as a function of direct to diffuse signal power ratio(KS1rT), the number of active users (K), PN code sequence length (N), the number of parity bit of linear code (b), forward channel BER, and ES1bT/NS1OT. From the results it is known that in severe fading environments (KS1rT=6) the performance of DS-CDMA/DQPSK system is not reliable so it is needed to adopt techniques for improvement. When an ARQ scheme is adopted, as a method for improving error performance, the performance improves compared with that of non-ARQ scheme and the degree of improvement is proportional to the number of parity bits of linear code. As increasing the number of parity bits, system performance is improved vut system throughput efficiency must be considered. In severe fading channel Hybrid ARQ scheme is more effective than ARQ scheme. As a result, ARQ scheme is appropriate for the high-reliability data communication systems over the radio channel in which the real time processing is not required.

  • PDF

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Channel Patterns (유로형상 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구)

  • Lee, Pil-Hyong;Cho, Son-Ah;Choi, Seong-Hun;Hwang, Sang-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • Selection of flow channel in the separation plate of PEMFC is very important parameter to improve its performance and reduce parasite loss. Flow patterns in the channel have great influence on the transport of hydrogen and all and water generated from electrochemical reaction in diffusion layer In this study, fluid flow in flow channel with parallel and interdigitated patterns are simulated three dimensionally on full flow domain including anode and cathode electrode together. The numerical results show that the fuel cell with interdigitated flow channel represents better performance than that with parallel flow channel due to its strong convective transport across the gas diffusion layer. But the pressure drop in parallel flow channel is much more than that in nterdigitated flow channel. The effect of temperature and stoichiometric number on performance can be calculated and analyzed as well.

  • PDF