• 제목/요약/키워드: Channel junctions

검색결과 36건 처리시간 0.02초

전송 게이트가 내장된 Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor 구조 광 검출기를 이용한 감도 가변형 능동 화소 센서 (Adjusting the Sensitivity of an Active Pixel Sensor Using a Gate/Body-Tied P-Channel Metal-Oxide Semiconductor Field-Effect Transistor-Type Photodetector With a Transfer Gate)

  • 장준영;이제원;권현우;서상호;최평;신장규
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.114-118
    • /
    • 2021
  • In this study, the sensitivity of an active pixel sensor (APS) was adjusted by employing a gate/body-tied (GBT) p-channel metal-oxide semiconductor field-effect transistor (PMOSFET)-type photodetector with a transfer gate. A GBT PMOSFET-type photodetector can amplify the photocurrent generated by light. Consequently, APSs that incorporate GBT PMOSFET-type photodetectors are more sensitive than those APSs that are based on p-n junctions. In this study, a transfer gate was added to the conventional GBT PMOSFET-type photodetector. Such a photodetector can adjust the sensitivity of the APS by controlling the amount of charge transmitted from the drain to the floating diffusion node according to the voltage of the transfer gate. The results obtained from conducted simulations and measurements corroborate that, the sensitivity of an APS, which incorporates a GBT PMOSFET-type photodetector with a built-in transfer gate, can be adjusted according to the voltage of the transfer gate. Furthermore, the chip was fabricated by employing the standard 0.35 ㎛ complementary metal-oxide semiconductor (CMOS) technology, and the variable sensitivity of the APS was thereby experimentally verified.

실리콘 선택적 결정 성장 공정을 이용한 Elevated Source/drain물 갖는 NMOSFETs 소자의 특성 연구 (A Study on the Device Characteristics of NMOSFETs Having Elevated Source/drain Made by Selective Epitaxial Growth(SEG) of Silicon)

  • 김영신;이기암;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권3호
    • /
    • pp.134-140
    • /
    • 2002
  • Deep submicron NMOSFETs with elevated source/drain can be fabricated using self-aligned selective epitaxial growth(SEG) of silicon for enhanced device characteristics with shallow junction compared to conventional MOSFETs. Shallow junctions, especially with the heartily-doped S/D residing in the elevated layer, give hotter immunity to Yt roll off, drain-induced-barrier-lowering (DIBL), subthreshold swing (SS), punch-through, and hot carrier effects. In this paper, the characteristics of both deep submicron elevated source/drain NMOSFETs and conventional NMOSFETs were investigated by using TSUPREM-4 and MEDICI simulators, and then the results were compared. It was observed from the simulation results that deep submicron elevated S/D NMOSFETs having shallower junction depth resulted in reduced short channel effects, such as DIBL, SS, and hot carrier effects than conventional NMOSFETs. The saturation current, Idsat, of the elevated S/D NMOSFETs was higher than conventional NMOSFETs with identical device dimensions due to smaller sheet resistance in source/drain regions. However, the gate-to-drain capacitance increased in the elevated S/D MOSFETs compared with the conventional NMOSFETs because of increasing overlap area. Therefore, it is concluded that elevated S/D MOSFETs may result in better device characteristics including current drivability than conventional NMOSFETs, but there exists trade-off between device characteristics and fate-to-drain capacitance.

YBCO SQUID 자력계를 이용한 자기심장검사장치 개발 (Development of magnetocardiograph system using YBCO SQUID magnetometers)

  • 김인선;오수호;임현균;이용호;이순걸;박용기
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.158-163
    • /
    • 2007
  • YBCO do superconducting quantum interference device (SQUID) magnetometers based on bicrystal junctions have been fabricated for magnetocardiograph (MCG) measurements. We could fabricate YBCO SQUID magnetometers having magnetic field noise of about $20fT/Hz^{1/2}$ at white noise region. We have developed an MCG system employing the high performance SQUID magnetometers. The lightweight MCG system, requiring liquid nitrogen as a coolant, consists of 6-channel SQUID sensors, an adjustable patient bed with sliding motion, and data analyses software. The MCG system could record quite clear MCG signals in a room with moderate magnetic shielding. In normal operation with multi-position MCG measurements, we could obtain clear 48-point mappings of magnetic field map and current source map with high enough signal qualities far clinical trials.

  • PDF

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

Endothelial Ca2+ signaling-dependent vasodilation through transient receptor potential channels

  • Hong, Kwang-Seok;Lee, Man-Gyoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권4호
    • /
    • pp.287-298
    • /
    • 2020
  • Ca2+ signaling of endothelial cells plays a critical role in controlling blood flow and pressure in small arteries and arterioles. As the impairment of endothelial function is closely associated with cardiovascular diseases (e.g., atherosclerosis, stroke, and hypertension), endothelial Ca2+ signaling mechanisms have received substantial attention. Increases in endothelial intracellular Ca2+ concentrations promote the synthesis and release of endothelial-derived hyperpolarizing factors (EDHFs, e.g., nitric oxide, prostacyclin, or K+ efflux) or directly result in endothelial-dependent hyperpolarization (EDH). These physiological alterations modulate vascular contractility and cause marked vasodilation in resistance arteries. Transient receptor potential (TRP) channels are nonselective cation channels that are present in the endothelium, vascular smooth muscle cells, or perivascular/sensory nerves. TRP channels are activated by diverse stimuli and are considered key biological apparatuses for the Ca2+ influx-dependent regulation of vasomotor reactivity in resistance arteries. Ca2+-permeable TRP channels, which are primarily found at spatially restricted microdomains in endothelial cells (e.g., myoendothelial projections), have a large unitary or binary conductance and contribute to EDHFs or EDH-induced vasodilation in concert with the activation of intermediate/small conductance Ca2+-sensitive K+ channels. It is likely that endothelial TRP channel dysfunction is related to the dysregulation of endothelial Ca2+ signaling and in turn gives rise to vascular-related diseases such as hypertension. Thus, investigations on the role of Ca2+ dynamics via TRP channels in endothelial cells are required to further comprehend how vascular tone or perfusion pressure are regulated in normal and pathophysiological conditions.

과부하 맨홀의 손실계수를 고려한 흐름의 수치모형 (A Numerical Modeling of Surcharged Manhole Flow with the Consideration of the Energy Loss Coefficient)

  • 김경범;김정수;윤세의
    • 대한토목학회논문집
    • /
    • 제33권2호
    • /
    • pp.521-528
    • /
    • 2013
  • 일반적으로 도시배수 시스템은 개수로 흐름으로 설계 된다. 그러나 설계빈도를 초과하는 강우발생 시 배수 시스템의 합류부 또는 맨홀 등에서 부분적인 과부하 흐름이 발생되고 있다. 그러므로 이와 같은 과부하 흐름에 의해 발생하는 배수 시스템에서의 압력흐름에 대한 연구의 필요성이 제기 되고 있다. 따라서 본 연구에서는 설계빈도를 초과 하는 강우사상 그리고 예측할 수 없는 집중호우 시 맨홀에서의 과부하 흐름에 관한 연구를 수행 하였다. 배수 시스템에서의 압력흐름의 문제점은 과부하 맨홀로부터의 월류량에 의한 도시홍수 발생이다. 그러므로 배수 시스템은 개수로 흐름으로 설계 되어야 할 뿐만 아니라 과부하 흐름 발생 시 맨홀내의 에너지 손실을 고려한 압력흐름의 해석이 필요하다. 따라서 본 연구에서는 과부하 맨홀의 에너지 손실을 고려하여 압력흐름을 해석 할 수 있는 수치모형을 개발하였다. 수치모형을 검증하기 위하여 수리모형실험 결과와 비교 검증하였고, 도시유출해석에 가장 널리 이용되는 SWMM의 결과와도 비교하였다. SWMM은 맨홀 내의 에너지 손실을 적절히 반영하지 못함으로써 맨홀 수심을 과소 산정하는 결과를 보인 반면, 본 연구 모형은 수리모형실험결과와 잘 일치하였다.