• Title/Summary/Keyword: Channel flows

Search Result 566, Processing Time 0.025 seconds

Analysis on Two Parallel Flows in Convergent Channel (축소 유로내의 두 평행 유동에 대한 해석)

  • Kwon, Jin-Kyung;Kim, Tae-Wook;Kim, Jin-Hyun;Kim, Jae-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Compound flow by confluence of two parallel flows through a convergent channel and its choking phenomenon are calculated by one-dimensional isentropic model and completely mixing model. Optical observations and pressure measurements for subsonic/subsonic compound flows are carried out and compared with the results of one-dimensional calculations. As a result, it is found that inlet conditions of one flow influence the behavior of the other flow as well as the choking condition and present experimental data agree well with the results of one-dimensional calculations.

Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea (여자만 서수도 해역의 조류 및 조석평균류 특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

Three-dimensional Rarefied Flows in Rotating Helical Channels (헬리컬 채널내부의 3차원 희박기체유동)

  • Hwang, Y.K.;Heo, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.625-630
    • /
    • 2000
  • Numerical and experimental investigations are peformed for the rarefied gas flows in pumping channels of a helical-type drag pump. Modern turbomolecular pumps include a drag stage in the discharge side, operating roughly in $10^{-2}{\sim}10Torr$. The flow occurring in the pumping channel develops from the molecular transition to slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic particle approach through the use of the direct simulation Monte Carlo(DSMC) method. The flow in a pumping channel is three-dimensional(3D), and the main difficulty in modeling a 3D case comes from the rotating frame of reference. Thus, trajectories of particles are no longer straight lines. In the Present DSMC method, trajectories of particles are calculated by integrating a system of differential equations including the Coriolis and centrifugal forces. Our study is the first instance to analyze the rarefied gas flows in rotating frame in the presence of noninertial effects.

  • PDF

CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell (PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Study on Two-Dimensional Laminar Flow through a Finned Channel (박막이 부착된 채널내의 2차원 층류유동장에 대한 연구)

  • Yoon Seok-Hyun;Jeong Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.53-59
    • /
    • 2002
  • A two-dimensional laminar flow through a channel with a pair of symmetric vertical fins is investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The Stokes flow for this channel is first investigated analytically and then the other laminar flows by numerical method. For analytic method, the method of eigen function expansion and collocation method are employed. In numerical solution for laminar flows, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, the streamline patterns are shown and the additional pressure drop due to the attached fins and the force exerted on the fin are calculated. It is clear that the force depends on the length of fins and Reynolds number. When the Reynolds number exceeds a critical value, the flow becomes asymmetric. This critical Reynolds number Re/sub c/ depends on the length of the fins.

THE CIRCULATION IN CHINJU BAY 2. Results of Drift Bottle Experiments (진주만의 해수 유동에 관하여 2. 해류병 표류 실험 결과)

  • CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.137-147
    • /
    • 1970
  • From November 1968 to March 1970, a series of drift bottle experiments were carried out in waters adjacent to and in Chinju Bay with the following results. Of the bottles released, $50\~69$ per cent were recovered. 1. The circulation of Chinju Bay is usually caused by the tidal current except during the winter season when the northwest monsoon prevails to cause a wind-drift current. 2. Sea water in the southern part of Chinju Bay flows northward at ebb tide. The ebb current east of the central submarine bank in Chinju Bay flows northeastward toward Samchonpo Channel through the eastern depression of the bank contributing to form a cyclonic eddy. The ebb current west of the bank, however, flows northward toward Noryang Channel through the western depression of the bank. 3. The ebb current nea. the southernmost part of Chinju Bay flows eastward toward Chijok Channel. 4. At flood tide, the main stream of the tidal current in Noryang Channel flows eastward. Turning smoothly to the right, the southern branch of the flood current flows southward through the depression and along the isobaths at the western margin of the central submarine bank, while the northern branch, turning to the left, flows into the Chin-gyo Bay of Hadong. 5. flood current in the eastern area of Kwang-yang Inlet runs northeastward toward Noryang Channel. A small eddy develops near Kwanumpo of Namhae Island. 6. The results suggest that such a drift bottle experiment can be recommended for the attestation of currents, although it is not suitable for a quantitative study of coastal currents.

  • PDF

Analysis of Temporal and Spatial Variations of Channel-Aquifer Interaction Using a Distributed Catchment Model: A Case Study for the Tarland Burn Catchment in the UK (분포형 유역 모델을 이용한 하천-지하수 상호작용의 시공간적 변동 해석: 영국 Tarland Burn 유역에 대한 사례 연구)

  • Koo, Bhon-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.253-257
    • /
    • 2007
  • Channel-aquifer interaction is one of the key hydrological processes that determine water flows in the stream/river channel. Field measurements of channel-aquifer interaction, however, is very difficult and costly, particularly when one intends to understand its variations across a catchment for a long period. Hydrological simulations using a catchment model are a relatively easier and cheaper alternative provided the model structure is appropriate for describing channel-aquifer interaction. In this study, a catchment model called CAMEL (Chemicals from Agricultural Management and Erosion Losses) is used for estimating channel-aquifer interaction over time and space. CAMEL is a distributed catchment model to simulate transformation and transport processes of sediment and pollutants as well as water flows at the catchment scale. In the model, a catchment is represented using a network of square columns each of which is comprised of various storages of water. CAMEL explicitly simulates both surface and subsurface processes including channel-aquifer interaction. This paper presents an application study results of CAMEL for the Tarland Burn Catchment, a small (catchment area $52\;km^2$) rural catchment in Scotland, UK, demonstrating some of the channel-aquifer interaction dynamics across the catchment during a 2-year period.

  • PDF

Micro- PIV Measurements of Microchannel Flows and Related Problems (마이크로 채널 내부 유동의 Micro-PIV측정과 제반 문제점)

  • Lee Sang-Joon;Kim Guk-bae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.79-84
    • /
    • 2002
  • Most microfluidic devices such as heat sinks for cooling micro-chips, DNA chip, Lab-On-Chip, and micro pumps etc. have microchannels of various size. Therefore, the design of practical microfluidics demands detail information on flow structure inside the microchannels. However, detail velocity field measurements are rare and difficult to carry out. In addition, as the microfluidics expands, accurate understanding of microscale transport phenomena becomes very important. In this research, micro-PIV system was employed to measure the velocity fields of flow inside a micro-channel. We carried out PIV measurements for several microchannels with varying channels width, inlet and outlet shape, filters, CCD camera and ICCD camera, etc. For effective composition of micro-PIV system, first of all, it is essential to understand optics related with micro-imaging of particles and the particle dynamics encountered in micro-scale channel flows. In addition, it is necessary to find the optimal condition for given experimental environment and? micro-scale flow to be investigated. The problems encountered in measuring velocity field of micro-channel flows are discussed in this paper.

  • PDF

Two Branches of Tsushima Warm Current in the Western Channel of the Korea Strait (韓國海峽 西水道에서 對馬暖流의 2個 支流)

  • Byun, Sang-Kyung;Chang, Sun-Duck
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.200-209
    • /
    • 1984
  • On the basis of oceanographic observation conducted in summer 1982, the flow pattern of the Tsushima Warm Current definitely showed two branches with high surface velocity more than 70 cm/sec in the western channel of Korea Strait. One of the branches, the East Korea Warm Current, found about 8 km off Pusan flows northward along the east coast of Korea and the other branch, located at about 20km off Pusan flows east after passing the Korea Strait. The branching of two flows already occurred before the Tsushima Warm Current reaches the Pusan Tsushima section, and the volume transport and the widths of the two branches are not much different from each other. The number of branches may be controlled by the width of western channel and the flow of two branches may also be related to the variation of layer depth and the widening ratio of widths between the western channel and the Japan Sea (East Sea).

  • PDF