• Title/Summary/Keyword: Channel decoding

Search Result 406, Processing Time 0.028 seconds

Methods to improve Log-MAP Decoding in Frequency Selective Fading Channels

  • Kim, Jeong-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.51-55
    • /
    • 2016
  • High-capacity, high quality services should be guaranteed in mobile communication environment. Excellent channel coding and compensation techniques are required so as to improve data reliability on fading channels. In this paper, we propose a method using double pilots, estimates and compensates for the fading of information symbols. The proposed method using Log-MAP Turbo decoder through the iterative decoder, improves BER performance under the environment of the frequency selective fading channel. Compared to the existing methods, the suggested methods show functional improvement of approximately 3dB in case that the number of iteration decoding is 5 and BER is $10^{-4}$.

Fast LDPC Decoding using Bit Plane Correlation in Wyner-Ziv Video Coding (와이너 지브 비디오 압축에서의 비트 플레인 상관관계를 이용한 고속 LDPC 복호 방법)

  • Oh, Ryanggeun;Shim, Hiuk Jae;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.160-172
    • /
    • 2014
  • Although Wyner-Ziv (WZ) video coding proves useful for applications employing encoders having restricted computing resources, the WZ decoder has a problem of excessive decoding complexity. It is mainly due to its iterative LDPC channel decoding process which repeatedly requests incremental parity data after iterative channel decoding of parity data received at each request. In order to solve the complexity problem, we divide bit planes into two groups and estimate the minimum required number of parity requests separately for the two groups of bit planes using bit plane correlation. The WZ decoder executes the iterative decoding process only after receiving parity data corresponding to the estimated minimum number of parity requests. The proposed method saves about 71% of the computing time in the LDPC decoding process.

The Softest handoff Design using iterative decoding (Turbo Coding)

  • Yi, Byung-K.;Kim, Sang-G.;Picknoltz, Raymond-L.
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • Communication systems, including cell-based mobile communication systems, multiple satellite communication systems of multi-beam satellite systems, require reliable handoff methods between cell-to-cell, satellite-to-satellite of beam-to-team, respectively. Recent measurement of a CDMA cellular system indicates that the system is in handoff at about 35% to 70% of an average call period. Therefore, system reliability during handoff is one of the major system performance parameters and eventually becomes a factor in the overall system capacity. This paper presents novel and improved techniques for handoff in cellular communications, multi-beam and multi-satellite systems that require handoff during a session. this new handoff system combines the soft handoff mechanism currently implemented in the IS-95 CDMA with code and packet diversity combining techniques and an iterative decoding algorithm (Turbo Coding). the Turbo code introduced by Berrou et all. has been demonstrated its remarkable performance achieving the near Shannon channel capacity [1]. Recently. Turbo codes have been adapted as the coding scheme for the data transmission of the third generation international cellular communication standards : UTRA and CDMA 2000. Our proposed encoder and decoder schemes modified from the original Turbo code is suitable for the code and packet diversity combining techniques. this proposed system provides not only an unprecedented coding gain from the Turbo code and it iterative decoding, but also gain induced by the code and packet diversity combining technique which is similar to the hybrid Type II ARQ. We demonstrate performance improvements in AWGN channel and Rayleigh fading channel with perfect channel state information (CSI) through simulations for at low signal to noise ratio and analysis using exact upper bounding techniques for medium to high signal to noise ratio.

  • PDF

Effect of Multiple Antennas at a Relay Node on the Performance of Physical-Layer Network Coding in Two-Way Relay Channel (양방향 중계채널에서 중계기 다중안테나가 물리계층네트워크 코딩의 성능에 미치는 영향)

  • Park, Jeonghong;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1438-1443
    • /
    • 2016
  • In this paper, we investigate the effect of multiple antennas at a relay node on the performance of physical-layer network coding (PNC) in the two-way relay channel (TWRC). We assume that two source nodes have a single antenna and the relay node has multiple antennas. We extend the conventional TWRC environment with a signle antenna at both relay and source nodes to the case of multiple antennas at the relay node. In particular, we consider two decoding strategies: separate decoding (SD) and direct decoding (DD). The SD decodes each packet from the two sources and performs the network coding with bit-wise exclusive OR (XOR) operation, while the DD decodes the network-coded packet from the two sources. Note that both decoding strategies are based on log-likelihood ratio (LLR) computation. It is shown that the bit error rate (BER) performance becomes significantly improved as the number of antennas at the relay node.

Performance of Turbo Codes in the Direct Detection Optical PPM Channel (직접 검파 펄스 위치 변조 광통신 채널에서의 터보 부호의 성능)

  • 이항원;이상민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.570-579
    • /
    • 2003
  • The performance of turbo codes is investigated in the direct detection optical PPM channel. We assume that an ideal photon counter is used as an optical detector and that the channel has background noise as well as quantum noise. Resulting channel model is M-ary PPM Poisson channel. We propose the structure of the transmitter and receiver for applying turbo codes to this channel. We also derive turbo decoding algorithm for the proposed coding system, by modifying the calculation of the branch metric inherent in the original turbo decoding algorithm developed for the AWGN channel. Analytical bounds are derived and computer simulation is performed to analyze the performance of the proposed coding scheme, and the results are compared with the performances of Reed-Solomon codes and convolutional codes.

Implementation of efficient multi-view system through function distribution in digital multi-channel broadcasting service

  • Kwon, Myung-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.17-24
    • /
    • 2017
  • In recent digital broadcasting, up to 250 channels are multiplexed and transmitted. The channel transmission is made in the form of MPEG-2 Transport Stream (TS) and transmits one channel (Video, Audio). In order to check if many broadcast channels are transmitted normally, in multi-channel multi-view system, ability of real-time monitoring is required. In order to monitor efficient multi-channel, a distributed system in which functions and load are distributed should be implemented. In the past, we used an inefficient system that gave all of the functionality to a piece of hardware, which limited the channel acceptance and required a lot of resources. In this paper, we implemented a distributed multi-view system which can reduce resources and monitor them economically through efficient function and load balancing. It is able to implement efficient system by taking charge of decoding, resizing and encoding function in specific server and viewer function in separate server. Through this system, the system was stabilized, the investment cost was reduced by 19.7%, and the wall monitor area was reduced by 52.6%. Experimental results show that efficient real-time channel monitoring for multi-channel digital broadcasting is possible.

Implementation of Chanel Encoder and Viterbi Decoder for the IEEE 802.1la Wireless LAN (IEEE 802.11a Wireless LAN용 채널부호화기 및 비터비 디코더의 구현)

  • Byun Nam-Hyun;Cheong Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.431-434
    • /
    • 2004
  • In this paper we present about implementation of channel coder and Viterbi decoder for Mobile communication & IEEE 802.11a Wireless LAN. In the IEEE 802.11a Wireless LAN decoding provided that Viterbi algorithm and convolutional encoder by constraint k=7, ($133_8,\;171_8$) for channel error correction. This Paper presents a novel survivor memory management and decoding techniques with sequential backward state transition control in the trace-back Viterbi decoder, In order to verification we provide to the examples of circuit design and decoding results.

  • PDF

Turbo Decoding for Precoded Systems over Multipath Fading Channels

  • Zhang, Qing;Le-Ngoc, THo
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.203-208
    • /
    • 2004
  • A combined precoding and turbo decoding strategy for multi-path frequency-selective fading channels is presented. The precoder and multi-path fading channel are jointly modeled as a finite-state probabilistic channel to provide the multi-stage turbo decoder with its statistics information. Both a priori and a posteriori probabilities are used in the metric computation to improve the system performance. Structures of the combined turbo-encoder, interleaver, and precoder in the transmitter and two-stage turbo decoder in the receiver are described. Performance of the proposed scheme in fixed, Rician and Rayleigh multi-path fading channels are evaluated by simulation. The results indicate that the combined precoding and two-stage turbo decoding strategy provides a considerable performance improvement while maintaining the same inner structure of a conventional turbo decoder.

An Efficient Method that Incorporate a Channel Reliability to the Log-MAP-based Turbo Decoding (Log-MAP 방식의 Turbo 복호를 위한 효과적인 채널 신뢰도 부과방식)

  • 고성찬;정지원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.464-471
    • /
    • 2000
  • The number of quantization bits of the input signals $X_k$,$Y_k$ need to be optimally determined through the trade-off between the H/W complexity and the BER performance in Turbo codes applications. Also, an effective means to incorporate a channel reliability $L_c$ in the Log-MAP-based Turbo decoding is highly required. because it has a major effect on both the complexity and the performance. In this paper, a novel bit-shifting approach that substitutes for the multiplying is proposed so as to effectively incorporate. $L_c$ in Turbo decoding. The optimal number of quantization bits of $X_k$,$Y_k$ is investigated through Monte-Carlo simulations assuming that bit-shifting approach is adopted. In addition. The effects of an incorrect estimation of noise variance on the performance of Turbo codes is investigated. There is a confined range in which the effects of an incorrect estimation can be ignored.

  • PDF

Space-Time Block Coding Techniques for MIMO 2×2 System using Walsh-Hadamard Codes

  • Djemamar, Younes;Ibnyaich, Saida;Zeroual, Abdelouhab
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Herein, a new space-time block coding technique is proposed for a MIMO 2 × 2 multiple-input multiple output (MIMO) system to minimize the bit error rate (BER) in Rayleigh fading channels with reduced decoding complexity using ZF and MMSE linear detection techniques. The main objective is to improve the service quality of wireless communication systems and optimize the number of antennas used in base stations and terminals. The idea is to exploit the correlation product technique between both information symbols to transmit per space-time block code and their own orthogonal Walsh-Hadamard sequences to ensure orthogonality between both symbol vectors and create a full-rate orthogonal STBC code. Using 16 quadrature amplitude modulation and the quasi-static Rayleigh channel model in the MATLAB environment, the simulation results show that the proposed space-time block code performs better than the Alamouti code in terms of BER performance in the 2 × 2 MIMO system for both cases of linear decoding ZF and MMSE.