• Title/Summary/Keyword: Channel code recognition

Search Result 7, Processing Time 0.024 seconds

Recognition Algorithm for RM Codes Using Fast Hadamard Transform (FHT를 이용한 RM부호 인식 알고리즘)

  • Kang, In-Sik;Lee, Hyun;Lee, Jae-Hwan;Yun, Sang-Bom;Park, Cheol-Sun;Song, Young-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.43-50
    • /
    • 2012
  • The use of an error-correcting code is essential in digital communication systems where the channel is noisy. Unless a receiver has accurate channel coding parameters, it becomes difficult to decode the digitized encoding bits correctly. In this paper, estimation algorithm for RM(Reed-Muller) codes using FHT (Fast Hadamard algorithm) is proposed. The proposed algorithm estimates the channel coding parameters of RM codes and then decodes the codes using the characteristic of FHT. And we also verify the algorithm by performing intensive computer simulation in additive white gaussian noise (AWGN) channel.

A study on the Data Anti-Collision of RFID system (무선인식시스템의 데이터 충돌방지에 관한 연구)

  • 강민수;신석균;백선기;박면규;곽칠성;이기서
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.471-477
    • /
    • 2002
  • In this paper, it is proposed instruction code satisfied algorithm that is able to prevent data collision when transponder access in the area of recognition system that is operated to single channel. Differ from absolute collision is used to in the time domain procedure, instruction code satisfied algorithm, transmits data which don't generate collision and must satisfy instruction code. So, to prevent data collision, transponder is of great if it read the entire instruction code. Consequently, it is applied to algorithm that made the system of wireless recognition13.56 Mhz. As a result, for the time of one bit data transmission had 14${\mu}$s difference, it is proved the prevention of data loss in experiment.

  • PDF

Recognition of Convolutional Code with Performance Analysis (길쌈 부호 복원 및 성능 분석)

  • Lee, Jae-Hwan;Lee, Hyun;Kang, In-Sik;Yun, Sang-Bom;Park, Cheol-Sun;Song, Young-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.260-268
    • /
    • 2012
  • The use of an error-correcting code is essential in communication systems where the channel is noisy. Unless a receiver has accurate channel coding parameters, it becomes difficult to decode the digitized encoding bits correctly. In this paper, we propose two algorithms for reconstructing convolutional codes: one for general convolutional codes and the other for punctured convolutional codes. And we also verify the algorithms by performing intensive computer simulation in additive white gaussian noise (AWGN) channel.

An Improved Reconstruction Algorithm of Convolutional Codes Based on Channel Error Rate Estimation (채널 오류율 추정에 기반을 둔 길쌈부호의 개선된 재구성 알고리즘)

  • Seong, Jinwoo;Chung, Habong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.951-958
    • /
    • 2017
  • In an attack context, the adversary wants to retrieve the message from the intercepted noisy bit stream without any prior knowledge of the channel codes used. The process of finding out the code parameters such as code length, dimension, and generator, for this purpose, is called the blind recognition of channel codes or the reconstruction of channel codes. In this paper, we suggest an improved algorithm of the blind recovery of rate k/n convolutional encoders in a noisy environment. The suggested algorithm improves the existing algorithm by Marazin, et. al. by evaluating the threshold value through the estimation of the channel error probability of the BSC. By applying the soft decision method by Shaojing, et. al., we considerably enhance the success rate of the channel reconstruction.

Reconstruction of Linear Cyclic Codes (미지의 선형 순회부호에 대한 복원기법)

  • Chung, Ha-Bong;Jang, Hwan-Seok;Cho, Won-Chan;Park, Cheal-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10C
    • /
    • pp.605-613
    • /
    • 2011
  • In most digital communication systems over the noisy channel, some form of forward error correction scheme is employed for reliable communications. If one wants to recover the transmitted message without any knowledge of the error correcting codes employed, it is of utmost importance to figure out and reconstruct the error correcting codes. In this paper, we propose two algorithms of reconstructing linear cyclic codes from the corrupted received bit sequence, one for general linear binary cyclic codes and the other for Reed-Solomon codes. For two algorithms, we ran computer simulations and the performances are shown to be superior to those with the conventional LWM method.

Simultaneous and Multi-frequency Driving System of Ultrasonic Sensor Array for Object Recognition

  • Park, S.C.;Choi, B.J.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.582-587
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. However, the recognition of objects using a ultrasonic sensor is not so easy due to its characteristics such as narrow beam width and no reflected signal from a inclined object. As one of the alternatives to resolve these problems, use of multiple sensors has been studied. A sequential driving system needs a long measurement time and does not take advantage of multiple sensors. Simultaneous and pulse coding driving system of ultrasonic sensor array cannot measure short distance as the length of the code becomes long. This problem can be resolved by multi-frequency driving of ultrasonic sensors, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a simultaneous and multi-frequency driving system for an ultrasonic sensor array for object recognition. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the multi-frequency signals, and a 5-channel frequency modulated signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from filtering of the received overlapping signals and calculation of the time-of-flights.

  • PDF

Simultaneous Driving System of Ultrasonic Sensors Using Codes (코드를 이용한 초음파 동시구동 시스템)

  • 김춘승;최병준;이상룡;이연정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1028-1036
    • /
    • 2004
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments by virtue that they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a comer, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding of ultrasonic signals, which allows multi-sensors to be emitted simultaneously and adjacent objects to be distinguished. Accordingly, this paper presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented. A micro-controller unit is implemented using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances fur each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.