• Title/Summary/Keyword: Channel bend

Search Result 71, Processing Time 0.023 seconds

An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel (사행수로에서의 유속 및 분산특성에 관한 실험적 연구)

  • Park, Sung-Won;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend (회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

A Study on the Curvature Ratio and Coefficient in Channel Bend (유로만곡부(流路彎曲部)의 곡율비(曲率比)와 곡율계수(曲率係數)에 관한 연구(硏究))

  • Chung, Yong Tai;Lee, Jin Eun;Song, Jai Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • Based on the momentum equation for the flow in a stream bend, the force per unit area which the flow exerts on the outer of a bend is directly proportional to a certain curvature coefficient, $C{\alpha}$. This coefficient is dependent on the ratio of bend radius(R) to flow width(W), as well as on the coefficient of dynamic bedload friction, $tan{\alpha}$. According to the results of the data analysis for the downstrream at the Han river, the range of R/w values is between 2.0 and 4.0. Exploring the variations of $C{\alpha}$ with R/w values a functional relationship which, for the known values of $tan{\alpha}$, shows maximum values of $C{\alpha}$ for R/w values between 2.21 and 4.42 in 1963, while in 1981 its values lied between 1.93 and 3.54.

  • PDF

A Study on the Correlation between Shiphandler's Subjective Evaluation and Maneuvering Difficulty in Curved Narrow Channel (굴곡된 협수로 통항에서 조반자의 주관적 위험감지도와 조종인난도와의 상관관계에 관한 기초 연구)

  • 이동섭;윤점동;정태권
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • The assesment of the safety of ship's transit in a curved narrow channel consists of the maneuvering safety determined by the chance of running aground, the maneuvering difficulty determined by ship's workload, and shiphandler's subjective evaluation. In this study, to examine the correlation between shiphandler's subjective evaluation and the maneuvering safety, the real-time and full-mission shiphandling simulator in the Korea Marine Training & Research Institute(KMTRI) was utilized. On the conning bridge of the shiphandling simulator, 50 experienced masters have conducted the modeled vessel of 60, 000 deadweight tonnage along the designed channel under 3 different environmental conditions. It was possible to assess and analyze theoretically the correlation between the shiphandler's subjective evaluation and maneuvering difficulty under each environmental condition by quantifying the data obtained from the tests. The results are as follows: $\circled1$ As the degree of maneuvering difficulty increases, the shiphandler's subjective evaluation increases in the designed channel under the designed environmental condition. $\circled2$ In the straight area, not the bend of the designed channel, maneuvering difficulty increases sharply under the environmental condition of current and wind coming from the stern.

  • PDF

A Simulation Study on the Improvement of the Waterway of Kwangyang Harbour (광양항 항로 개선에 관한 Simulation 연구)

  • 홍종해;김환수
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.2
    • /
    • pp.1-18
    • /
    • 1994
  • Kwangyang harbour has been developed very rapidly and has 20 berths including 2 for 250,000DWT bulk carriers at the terminal of Kwangyang Steel Company only. In addition to this, the port is developing a container terminal with 10 berths for 50,000GRT container ships, the construction of which is scheduled to be finished in the year 2000. Because of these development, it has been pointed out that the existing waterways are not wide and safe enough for the new large ships to be catered for. This work, therefore, aimed to examine the naviga-tional safety of the waterways of Kwangyang Harbour, and to suggest how to improve the existing water-ways for the large ships to be introduced in the near future. In examining the safety of the existing and newly suggested waterways, waterway design simulation methodology has been applied. From this study, it has been suggested that the No.4 navigational channel has to be dredged to the depth of 22.5 meters and used as an entrance channel only, while the No.3 channel is used as an exit channel. Additionally, a new waterway has been recommended to be established over the Myodo Island for the container ships which will use the new terminal, the width of which has been recommended to be 400 meters with 440 meters from the bend area.

  • PDF

Fluid Dynamic Efficiency of an Anatomically Correct Total Cavopulmonary Connection: Flow Visualizations and Computational Fluid Dynamic Studies

  • Yun, S.H.;Kim, S.Y.;Kim, Y.H.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-16
    • /
    • 2004
  • Both flow visualizations and computational fluid dynamics were performed to determine hemodynamics in a total cavopulmonary connection (TCPC) model for surgically correcting congenital heart defects. From magnetic resonance images, an anatomically correct glass model was fabricated to visualize steady flow. The total flow rates were 4, 6 and 8L/min and flow rates from SVC and IVC were 40:60. The flow split ratio between LPA and RPA was varied by 70:30, 60:40 and 50:50. A pressure-based finite-volume software was used to solve steady flow dynamics in TCPC models. Results showed that superior vena cava(SVC) and inferior vena cava(IVC) flow merged directly to the intra-atrial conduit, creating two large vortices. Significant swirl motions were observed in the intra-atrial conduit and pulmonary arteries. Flow collision or swirling flow resulted in energy loss in TCPC models. In addition, a large intra-atrial channel or a sharp bend in TCPC geometries could influence on energy losses. Energy conservation was efficient when flow rates in pulmonary branches were balanced. In order to increase energy efficiency in Fontan operations, it is necessary to remove a flow collision in the intra-atrial channel and a sharp bend in the pulmonary bifurcation.

  • PDF

An Analysis of the Flow and Bed Topography Characteristics of Curved Channels with Numerical Model (수치모형에 의한 만곡수로의 흐름 및 하상 특성 분석)

  • Jeong, Jae-Uk;Han, Jeong-Seok;Yun, Se-Ui
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.111-121
    • /
    • 2000
  • A numerical model which can analyze the flow and bed topography characteristics of a single bend and continuous one was suggested using the equations of mass, momentum, the vertical distribution of secondary flow, and the transverse bed slope. The calculated flow and bed topography characteristic values were compared with the experimental data in a single bend, and the predicted path of maximum streamwise velocity in continuous bends also compared with the Vadnal and Chang's data. The comparisons gave good results. A curved channel with 180 degrees was used. Sand and anthracite were selected as bed materials in the movable bed experiments. The model application of this model to the sand bed and the anthracite one accorded well with the observed values in the experiments. This model was proved to be useful for predicting the flow and bed topography with the change of bed materials. The results of this research could be used to construct and control curved channels as a fundamental information.mation.

  • PDF

Experimental Study for Protection of Local Scouring around Bridge Pier in a Curved Channel (만곡부에 위치한 교각주위의 국부세굴 보호공에 관한 실험적 연구)

  • Choe, In-Ho;Park, Yeong-Jin;Song, Jae-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.269-277
    • /
    • 1998
  • Laboratory flume experiments to investigate the characteristics of the flows and local scour around circular bridge pier in a curved channel are performed. In this study, the effect of a circular collar device for controlling the depth of scour is examined. The scour depth with a collar is about 40% of the scour depth without collar in the straight course of the flume while it is about 44% of the scour depth without collar at the location of 150' in the curved channel. As the results of experiments using the collar of which diameter is twice of pier, the reduction of scour depth is the most effective in a straight channel when the location of collar is 0.2h( h:depth) below the channel bottom. And, the reduction of scour depth is the most effective in a curved channel when the location of collar is 0.1h below the channel bottom.

  • PDF

Analysis of Correlation on Physical Characteristics and Bed Materials in Natural Rivers (자연하천에서 하도의 물리적 특성과 하상재료의 상관관계분석)

  • Kim, Ki-Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.95-104
    • /
    • 2010
  • The purpose of this study is to analyze the correlation between physical stream characteristics and bed materials in natural rivers. Accordingly, four natural rivers were selected reference streams, they were Nam river, Sumjin River, Naesung River and Han River. Grain size distributions of bed materials were gravels, cobbles and boulders in Han river and Nam river, were sand, gravels, cobbles and boulders in Sumjin river and were sand in Naesung river. Four reference streams were divided into each two reference reaches (straight and bend) by plan and profile characteristics of naturally meandering stream. Therefore various reference reaches were chosen in the aspect of physical stream characteristics and grain size distributions. The results investigated and analyzed are as follows. The streams that grain sizes distributions of river bed materials were coarse were stable because they had variety of bed slope without sediment deposition, and then the riffles frequency and the physical characteristics were various. Also, velocitydepth regime were various in four kinds, and the response parts for water level change were small, so that channel flow status were stable and excellent condition. On the other hand, sand river that grain sizes distributions of river bed materials were fine had not the variety of parameters as velocity-depth regimes, sediment deposition, channel flow status and riffles frequency, so that the physical stream characteristics were not various.

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.