• 제목/요약/키워드: Channel bandwidth

Search Result 896, Processing Time 0.032 seconds

A Study on the Optical Filters Bandwidth with Error Probability in Preamplifier System (전치증폭시스템에서 에러확률에 따른 광 필터의 대역폭에 관한 연구)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3642-3646
    • /
    • 2012
  • In this paper, the bandwidth of the filters used in optical communication systems and systems for the correlation between the error probability has been studied. Preamplifier that occurs in the system error probability as a function of the sensitivity of the receiver on the receiver sensitivity was shown for the various error probability calculation is performed. In addition, the channel data rate on the probability of various errors, changes in the function of the optimal bandwidth for the receiver filter was calculated, as required to operate at optimal range of the filter bandwidth, data rate per channel in a 10Gb/s the range of when is between 0.2 and 3.5nm.

Coherence Bandwidth and Coherence Time for the Communication Frame in the Underwater of East Sea (동해 천해환경에서 수중 통신 프레임 설계를 위한 상관 대역폭과 상관 시간의 산출)

  • Choi, Dong-Hyun;Kim, Hyeon-Su;Kim, Nam-Ri;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.365-373
    • /
    • 2010
  • For effective underwater digital communications, a frame structure is used, which includes pilots in time and frequency domains for channel estimation at a receiver. To estimate channel precisely, the each pilot should be located less than coherence time and coherence bandwidth. This paper measured underwater communication environments to provide coherence time and coherence bandwidth. Based on the measurement, the paper exhibits the calculated coherence time and coherent bandwidth is adequate by computer simulations.

A Channel Allocation Method according to the required bandwidth of streams in MOST network (MOST 네트워크에서 전송 스트림의 요구 대역폭에 따른 채널 할당 방안)

  • Kim, Seon-nam;Jang, Si-Woong;Yu, Yun-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.131-134
    • /
    • 2009
  • The MOST network, which is a network for vehicle infotainment network, requires efficient channel allocation to provide multimedia service effectively. Though there is a study on channel allocation according to network traffic as studies on channel allocation for MOST network, there have scarcely been studies on channel allocation according to bandwidth of multimedia for transferring. Therefore, in this paper, we propose the channel allocation method which calculates the number of channels by analyzing multimedia data for transferring and assigns the optimal number of channels for the given data. The proposed method reduces wasting of channels by optimally allocating channels and prevents initializing network due to change of Boundary Descriptor.

  • PDF

A Method for Optimal Power Assignment of the Transponder Input Carriers in the Multi-level & Multi-bandwidth System (Multi-level & Multi-bandwidth 시스템에서 위성중계기 입력반송파 전력의 최적 할당 기법)

  • 김병균;최형진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1167-1176
    • /
    • 1995
  • This paper suggests a method for optimal power assignment of the satellite transponder input carriers in the Multi-level & Multi-bandwidth system. The interference and the noise effects analyzed for the optimal power assignment are intermodulation product caused by the nonlinear transponder characteristics, adjacent channel interference, co-channel interference, and thermal noise in the satellite link. The Fletcher- Powell algorithm is used to determine the optimal input carrier power. The performance criteria for optimal power assignment is classified into 4 categories according to the CNR of destination receiver earth station to meet the requirement for various satellite link environment. We have performed mathematical analysis of objective functions and their derivatives for use in the Fletcher-Powell algorithm, and presented various simulation results based on mathematical analysis. Since the satellite link, it is meaningful to model and analyze these effects in a unified manner and present the method for optimal power assignment of transponder input carriers.

  • PDF

Experiment of VoIP Transmission with AMR Speech Codec in Wireless LAN (무선랜 환경에서 AMR 음성부호화기를 적용한 VoIP 전송 실험)

  • Shin, Hye-Jung;Bae, Keun-Sung
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.67-73
    • /
    • 2004
  • Packet loss, jitter, and delay in the Internet are caused mainly by the shortage of network bandwidth. It is due to queuing and routing process in the intermediate nodes of the packet network. In the Internet whose bandwidth is changing very rapidly in time depending on the number of users and data traffic, controlling the peak transmission bit-rate of a VoIP. system depending on the channel condition could be very helpful for making use of the available network bandwidth. Adapting packet size to the channel condition can reduce packet loss to improve the speech quality. It has been shown in [1] that a VoIP system with an AMR speech codec provides better speech quality than VoIP systems with fixed rate speech codecs. With the adaptive codec mode assignment. algorithm proposed in [1], in this paper, we performed the voice transmission experiments using the wireless LAN through the real Internet environment. Experimental results are analyzed and discussed with our findings.

  • PDF

A Minimum Interference Channel Assignment Algorithm for Performance Improvement of Large-Scale Wireless Mesh Networks (대규모 무선 메쉬 네트워크의 성능 향상을 위한 최소 간섭 채널 할당 알고리즘)

  • Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.964-972
    • /
    • 2009
  • Wireless mesh network (WMN) is emerging a future core technology to resolve many problems derived from exist wireless networks by employing multi-interface and multi-channel. Ability to utilize multiple channels in WMNs substantially increases the effective bandwidth available to wireless network nodes. However, minimum interference channel assignment algorithms are required to use the effective bandwidth in multi-channel environments. This paper proposes a cluster-based minimum interference channel assignment (MI-CA) algorithm to improve the performance of WMN. The MI-CA algorithm is consists of Inter-Cluster and Intra-Cluster Intrchannel assignment between clusters and in the internal clusters, respectively. The Inter-Cluster channel assignment assigns a barebone channel to cluster heads and border nodes based on minimum spanning tree (MST) and the Intra-Cluster channel assignment minimizes channel interference by reassigning ortasgonal channels between cluster mespann. Our simheation results show that MI-CA can improve the performance of WMNs by minimizing channel interference.

Time-Varying Multipath Channel Estimation with Superimposed Training in CP-OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.822-825
    • /
    • 2006
  • Based on superimposed training methods, a novel time-varying multipath channel estimation scheme is proposed for orthogonal frequency division multiplexing systems. We first develop a linear least square channel estimator, and meanwhile find the optimal superimposed sequences with respect to the channel estimates' mean square error. Next, a low-rank approximated channel estimator is obtained by using the singular value decomposition. As demonstrated in simulations, the proposed scheme achieves not only better performance but also higher bandwidth efficiency than the conventional pilot-aided approach.

  • PDF

A New Routing Protocol in Wireless Ad-hoc Networks with Multiple Radios and Channels

  • Ko, Sung-Won;Cho, Jeong-Hwan;Hong, Kwon-Eui
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.26-40
    • /
    • 2010
  • We propose a new routing protocol, MCQosR, that is based on bandwidth estimation, admission control, and a routing metric, MCCR - suitable for wireless ad-hoc networks with multiple radios and channels. To use the full capacity of a wireless link, we assume a node with multiple radios for full duplex operation, and a radio using multiple channels to exclude route-intra interference. This makes it possible to use the capacity of a wireless link. Then, to provide bandwidth and delay guarantee, we have a radio with a fixed channel for layer-3 data reception at each node, used to estimate the available bandwidth and expected delay of a wireless link. Based on the estimate of available bandwidth and delay, we apply the call admission control to a new call requiring bandwidth and delay guarantee. New calls with traffic that will overflow link or network capacity are rejected so the accepted calls can use the required bandwidth and delay. Finally, we propose a routing metric, MCCR, which considers the channel contentions and collisions of a wireless link operating in CSMA/CA. MCCR is useful for finding a route with less traffic and distributing traffic over the network to prevent network congestion as much as possible. The simulation of the MCQosR protocol and the MCCR metric shows traffic is distributed and guaranteed service is provided for accepted calls.

TCP Accelerator for DVB-RCS SATCOM Dynamic Bandwidth Environment with HAIPE

  • Kronewitter, F. Dell;Ryu, Bo;Zhang, Zhensheng;Ma, Liangping
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.518-524
    • /
    • 2011
  • A high assurance IP encryption (HAIPE) compliant protocol accelerator is proposed for military networks consisting of red (or classified) networks and black (or unclassified) networks. The boundary between red and black sides is assumed to be protected via a HAIPE device. However, the IP layer encryption introduces challenges for bandwidth on demand satellite communication. The problems experienced by transmission control protocol (TCP) over satellites are well understood: While standard modems (on the black side) employ TCP performance enhancing proxy (PEP) which has been shown to work well, the HAIPE encryption of TCP headers renders the onboard modem's PEP ineffective. This is attributed to the fact that under the bandwidth-on-demand environment, PEP must use traditional TCP mechanisms such as slow start to probe for the available bandwidth of the link (which eliminates the usefulness of the PEP). Most implementations recommend disabling the PEP when a HAIPE device is used. In this paper, we propose a novel solution, namely broadband HAIPE-embeddable satellite communications terminal (BHeST), which utilizes dynamic network performance enhancement algorithms for high latency bandwidth-on-demand satellite links protected by HAIPE. By moving the PEP into the red network and exploiting the explicit congestion notification bypass mechanism allowed by the latest HAIPE standard, we have been able to regain PEP's desired network enhancement that was lost due to HAIPE encryption (even though the idea of deploying PEP at the modem side is not new). Our BHeST solution employs direct video broadcast-return channel service (DVB-RCS), an open standard as a means of providing bandwidth-on-demand satellite links. Another issue we address is the estimation of current satellite bandwidth allocated to a remote terminal which is not available in DVBRCS. Simulation results show that the improvement of our solution over FIX PEP is significant and could reach up to 100%. The improvement over the original TCP is even more (up to 500% for certain configurations).

A Study on Next-Generation IPTV Multimedia Transmission Scheme (차세대 IPTV 멀티미디어 전송기법 연구)

  • Park, Byung-Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.21-28
    • /
    • 2009
  • To provide IPTV service successfully, we have to guarantee quality of service (QoS). However, in IPTV service, when we change channels, channel zapping delay will cause lower subscriber's satisfaction. Also, we can not provide IPTV service efficiently by limited bandwidth problem. In this paper, we propose a new enhanced IPTV transmission scheme to solve the two types problems using RACR (Robust Aggregation Control Router) which can control bandwidth and channel zapping time.

  • PDF