• Title/Summary/Keyword: Channel backscattering coefficient

Search Result 3, Processing Time 0.015 seconds

Extraction of Ballistic Parameters in 65 nm MOSFETs

  • Kim, Jun-Soo;Lee, Jae-Hong;Kwon, Yong-Min;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • The channel backscattering coefficient and injection velocity have been extracted experimentally in 65nm MOSFETs. Thanks to an experimental extraction methodology taking into account multi-subband population, we demonstrate that the short channel ballistic efficiency is slightly greater than long channel ballistic efficiency.

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Distribution and Abundance of Japanese Anchovy Engraulis japonicus and Other Fishes in Asan Bay, Korea, estimated Hydroacoustic Survey (수산음향기법을 이용한 아산만 멸치(Engraulis japonicus)와 기타어군의 분포 및 현존량 추정)

  • Lee, Hyung-Been;Kang, Don-Hyug;Im, Yang-Jae;Lee, Kyoung-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.671-681
    • /
    • 2014
  • The distribution and abundance of coastal fish species in Asan Bay, Korea, were estimated from hydroacoustic survey and net catches. Acoustic data were collected with 38 and 200 kHz from July to October of 2012, and converted to the nautical area scattering coefficient (NASC, $m^2/mile^2$) for $0.25n{\cdot}mile$ along ten transects. Japanese anchovy Engraulis japonicus was the dominant specie in the net catches. The virtual echogram technique was used to distinguish E. japonicus from other species based on the differences in the mean volume backscattering strength (${\Delta}MVBS$) at 38 and 200 kHz. Engraulis japonicus and other fishes are mainly distributed in the center channel and outer part of Asan Bay. E. japonicus tends to move from inner to outer Asan Bay in summer and fall. From NASC data, the target strength and length-weight function of E. japonicus and other fishes were used to estimate the E. japonicus stock at 24.1-93.3 tons, and other fish at 40.6-88.4 tons from July to October 2012. The estimated anchovy biomass compared well with the cumulative catch weight from stow net catches. The hydroacoustic method offers an approach to understanding spatial/temporal structure and estimating the biomass of fish aggregations in coastal areas.