• Title/Summary/Keyword: Channel attention

Search Result 377, Processing Time 0.04 seconds

Multi-channel and Multi-hop transmission scheme for cognitive radio networks (인지무선네트워크에서 멀티채널 멀티홉 전송 기법)

  • Kwon, Youngmin;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.609-610
    • /
    • 2017
  • Cognitive radio communication techniques have been attracting attention to efficiently use the scarce spectrum as the wireless communication service increases. In cognitive radio communication, efforts to minimize interference to the primary user are important technical factors. In a multi-hop wireless ad hoc network, multi-hop transmission requires path and channel selection considering channel interference as well as collision with primary users. In the multi-channel environment, cognitive radio network has different capacities depending on the inter-channel interference and collision with the main users. In this paper, we propose a multi-hop transmission scheme that minimizes inter-channel interference and reduce collision with primary users.

  • PDF

Evaluation of Attention and Relaxation Levels of Archers in Shooting Process using Brain Wave Signal Analysis Algorithms (뇌파 신호 분석 알고리즘을 이용한 양궁 슈팅 과정에 대한 집중력 및 긴장이완 수준 평가)

  • Lee, Koo-Hyoung
    • Science of Emotion and Sensibility
    • /
    • v.12 no.3
    • /
    • pp.341-350
    • /
    • 2009
  • Archer's capability of attention and relaxation control during shooting process was evaluated using EEG technology. Attention and meditation algorithms were used to represent the levels of mental concentration and relaxation levels. Elite, mid-level, and novice archers were tested for short and long distance shootings in the archery field. Single channel EEG was recorded on the forehead (Fp1) during the shooting process, and attention and meditation levels were computed by real time. Four types of variations were defined based on the increasing and decreasing patterns of attention and meditation levels during shooting process. Elite archers showed increases in both attention and relaxation while mid-level archers showed increased attention but decreased relaxation. Elite archers also showed higher levels of attention at the release than mid-level and novice archers. Levels of attention and relaxation and their variation patterns were useful to categorize archers and to provide feedback in training.

  • PDF

Convolutional Network with Densely Backward Attention for Facial Expression Recognition (얼굴 표정 인식을 위한 Densely Backward Attention 기반 컨볼루션 네트워크)

  • Seo, Hyun-Seok;Hua, Cam-Hao;Lee, Sung-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.958-961
    • /
    • 2019
  • Convolutional neural network(CNN)의 등장으로 얼굴 표현 인식 연구는 많은 발전을 이루었다. 그러나, 기존의 CNN 접근법은 미리 학습된 훈련모델에서 Multiple-level 의 의미적 맥락을 포함하지 않는 Attention-embedded 문제가 발생한다. 사람의 얼굴 감정은 다양한 근육의 움직임과 결합에 기초하여 관찰되며, CNN 에서 딥 레이어의 산출물로 나온 특징들의 결합은 많은 서브샘플링 단계를 통해서 class 구별와 같은 의미 정보의 손실이 일어나기 때문에 전이 학습을 통한 올바른 훈련 모델 생성이 어렵다는 단점이 있다. 따라서, 본 논문은 Backbone 네트워크의 Multi-level 특성에서 Channel-wise Attention 통합 및 의미 정보를 포함하여 높은 인식 성능을 달성하는 Densely Backwarnd Attention(DBA) CNN 방법을 제안한다. 제안하는 기법은 High-level 기능에서 채널 간 시멘틱 정보를 활용하여 세분화된 시멘틱 정보를 Low-level 버전에서 다시 재조정한다. 그런 다음, 중요한 얼굴 표정의 묘사를 분명하게 포함시키기 위해서 multi-level 데이터를 통합하는 단계를 추가로 실행한다. 실험을 통해, 제안된 접근방법이 정확도 79.37%를 달성 하여 제안 기술이 효율성이 있음을 증명하였다.

A Study on a Multi-channel Fiber Optic Hydrophone System (다채널 광섬유 하이드로폰 배열 시스템에 관한 연구)

  • 김정석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.89-93
    • /
    • 2001
  • In recent years Fiber optic hydrophone systems have been the focus of much attention in the sonar world. For sonar arrays, a fiber optic approach offers the major benefit of passive multiplexing of large numbers of hydrophones without underwater electronics. This paper describes recent development work covering array construction, opto-electronics development, hydrohpone design and sea trials. And the development of an interferometric mult-channel fiber optic hydrophone system which uses time division multiplexing capable of driving in excess of 32 channel is described. For this, a 12 channel time division multiplexing array has been constructed, and the performance of this system is demonstrated by sea trial.

  • PDF

ISRMC-MAC: Implementable Single-Radio, Multi-Channel MAC Protocol for WBANs

  • Cho, Kunryun;Jeon, Seokhee;Cho, Jinsung;Lee, Ben
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1052-1070
    • /
    • 2016
  • Wireless Body Area Networks (WBANs) have received a lot of attention as a promising technology for medical and healthcare applications. A WBAN should guarantee energy efficiency, data reliability, and low data latency because it uses tiny sensors that have limited energy and deals with medical data that needs to be timely and correctly transferred. To satisfy this requirement, many multi-radio multi-channel MAC protocols have been proposed, but these cannot be implemented on current off-the-shelf sensor nodes because they do not support multi-radio transceivers. Thus, recently single-radio multi-channel MAC protocols have been proposed; however, these methods are energy inefficient due to data duplication. This paper proposes a TDMA-based single-radio, multi-channel MAC protocol that uses the Unbalanced Star+Mesh topology to satisfy the requirements of WBANs. Our analytical analysis together experiments using real sensor nodes show that the proposed protocol outperforms existing methods in terms of energy efficiency, reliability, and low data latency.

A study on equal-channel angular extrusion process conditions for improving mechanical properties of magnesium alloy (기계적 특성 향상을 위한 마그네슘 합금의 등틍로각압출 공정 조건에 관한 연구)

  • Bae, Seong-Hwan;Min, Kyung Ho
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.12-18
    • /
    • 2016
  • Although magnesium alloy has received much attention to date for its lightweight and high specific strength, their applications are impeded by the low formability which is caused by the hexagonal crystal structure at room temperature. In general, equal-channel angular extrusion(ECAE) is recognized as one of the attractive severe plastic deformation techniques where the processed bulk metals generally achieve ultrafine-grained microstructure leading to improved physical characteristics and mechanical properties. ECAE process has several parameters such as angle of die, process temperature, process route and speed. During ECAE process of Mg alloy, these parameters has great influence on the extrudability and the mechanical properties of alloy. The aim of this study is to estimate the influences of process conditions on the formability of AZ31 and AZ31-CaO alloys. Mg alloys are processed through ECAE at elevated temperatures using three types of die with channel angle of $90^{\circ}$, $110^{\circ}$, $135^{\circ}$ using route $B_c$, respectively. This study discusses the feasibility of using ECAE to improve both formability and strength on magnesium alloys by comparative analyzing the mechanical properties and microstructural evolution in each condition.

The Effect of Obstacle Number, Shape and Blockage Degree in Flow Field of PEMFC on its Performance

  • Zongxi Zhang;Xiang Fan;Wenhao Lu;Jian Yao;Zhike Sui
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.132-151
    • /
    • 2024
  • Proton exchange membrane fuel cell (PEMFC) has received extensive attention as it is the most common hydrogen energy utilization device. This research not only investigated the effect of obstacle number and shape on PEMFC performance, but also studied the effect of the blockage degree in the channel of PEMFC on its performance. It was found that compared with traditional scheme, longitudinally distributed obstacles scheme can significantly promote reactants transfer to catalyst layer, and the blockage degree in the channel effect PEMFC performance most. The scheme with 10 rectangular obstacles in single channel and 60% channel blockage had the best output performance and the most uniform distribution of reactants and products. Obstacle height distribution can significantly affect PEMFC performance, the blockage degree in the whole basin was large, particularly as the channel was blocked to higher degree in region 2 and region 3, higher net power density and better mass transfer effect can be obtained. Among them, the fuel cell with the blockage degree of 40%, 60% and 60% in region 1, region 2 and region 3 have the best PEMFC output performance and mass transfer, the net power density was 29.8% higher than that of traditional scheme.

Analysis of W-CDMA system with Turbo Code in Realistic Wideband Multipath Channel (광대역 다중경로 실측채널에서 터보부호를 적용한 W-CDMA 시스템의 성능 분석)

  • 홍청호;김덕수;김신희;전준수;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.959-962
    • /
    • 2001
  • Turbo codes of long block sizes have been known to show very good performance in an AWGN channel and the turbo code has been strongly recommended as error correction code for IMT-2000 in 3GPP(3rd Generation Partnership Project). Recently, turbo codes of short block sizes suitable for real time communication systems have attracted a lot of attention. Thus, in this paper we consider the turbo code of 1/3 code rate and short frame size of 192 bits in ITU-R channel model. We analyzed the performance of W-CDMA systems of 10MHz bandwidths employing RAKE receiver with not only MRC diversity but also turbo code.

  • PDF

DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL (2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석)

  • Shin, S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

Some Device Design Considerations to Enhance the Performance of DG-MOSFETs

  • Mohapatra, S.K.;Pradhan, K.P.;Sahu, P.K.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.6
    • /
    • pp.291-294
    • /
    • 2013
  • When subjected to a change in dimensions, the device performance decreases. Multi-gate SOI devices, viz. the Double Gate MOSFET (DG-MOSFET), are expected to make inroads into integrated circuit applications previously dominated exclusively by planar MOSFETs. The primary focus of attention is how channel engineering (i.e. Graded Channel (GC)) and gate engineering (i.e. Dual Insulator (DI)) as gate oxide) creates an effect on the device performance, specifically, leakage current ($I_{off}$), on current ($I_{on}$), and DIBL. This study examines the performance of the devices, by virtue of a simulation analysis, in conjunction with N-channel DG-MOSFETs. The important parameters for improvement in circuit speed and power consumption are discussed. From the analysis, DG-DI MOSFET is the most suitable candidate for high speed switching application, simultaneously providing better performance as an amplifier.