• Title/Summary/Keyword: Channel assignment problem

Search Result 64, Processing Time 0.022 seconds

A Hopfield Neural Network Model for a Channel Assignment Problem in Mobile Communication (이동통신에서 채널 할당 문제를 위한 Hopfield 신경회로망 모델)

  • 김경식;김준철;이준환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 1993
  • The channel assignment problem in a mobile communication system is a NP-complete combinatorial optimization problem, in which the calculation time increases exponentially as the range of the problem is extended. This paper adapts a conventional Hopfield neural network model to the channel assignment problem to relieve the calculation time by means of the parallelism supplied from the neural network. In the simulation study, we checked the feasability of such a parallel method for the fixed channel assignment with uniform, and nouniform channel requirements, and for the dynamic channel assignment with considering continously varying channel requirements.

  • PDF

Interference Aware Channel Assignment Algorithm for D2D Multicast Underlying Cellular Networks

  • Zhao, Liqun;Ren, Lingmei;Li, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2648-2665
    • /
    • 2022
  • Device-to-device (D2D) multicast has become a promising technology to provide specific services within a small geographical region with a high data rate, low delay and low energy consumption. However, D2D multicast communications are allowed to reuse the same channels with cellular uplinks and result in mutual interference in a cell. In this paper, an intelligent channel assignment algorithm is designed in D2D underlaid cellular networks with the target of maximizing network throughput. We first model the channel assignment problem to be a throughput maximizing problem which is NP-hard. To solve the problem in a feasible way, a novel channel assignment algorithm is proposed. The key idea is to find the appropriate cellular communications and D2D multicast groups to share a channel without causing critical interference, i.e., finding a channel for a D2D multicast group which generates the least interference to network based on current channel assignment status. In order to show the efficacy and effectiveness of our proposed algorithm, a novel search algorithm is proposed to find the near-optimal solution as the baseline for comparisons. Simulation results show that the proposed algorithm improves the network throughput.

An Optimization Rule for Channel Assignment Problem (CAP) (통신채널 할당 최적화 규칙)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.37-45
    • /
    • 2013
  • In the absence of a single deterministic rule for the channel assignment problems, heuristic algorithms are predominantly employed to partly solve the problems. This paper thus proposes deterministic rules for the channel assignment problems. These deterministic rules have successfully yielded the optimal solution when applied to the Philadelphia's 9 case examples.

Link Scheduling and Channel Assignment in Multi-channel Cognitive Radio Networks: Spectrum Underlay Approach

  • Nguyen, Mui Van;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.300-302
    • /
    • 2012
  • In this paper, we investigate the performance of multi-channel cognitive radio networks (CRNs) by taking into consideration the problem of channel assignment and link scheduling. We assume that secondary nodes are equipped with multiple radios and can switch among multiple channels. How to allocate channels to links and how much power used on each channel to avoid mutual interference among secondary links are the key problem for such CRNs. We formulate the problem of channel assignment and link scheduling as a combinatorial optimization problem. Then, we propose a the optimal solution and show that it converges to maximum optimum in some iterations by using numerical results.

Hierarchical Cellular Network Design with Channel Allocation Using Genetic Algorithm (유전자 알고리즘을 이용한 다중계층 채널할당 셀룰러 네트워크 설계)

  • Lee, Sang-Heon;Park, Hyun-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.321-333
    • /
    • 2005
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. As demand for services has expanded in the cellular segment, sever innovations have been made in order to increase the utilization of bandwidth. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. Hierarchical network design holds the public eye because of increasing demand and quality of service to mobile users. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. In addition, we know the avenue and demand as an assumption. We propose the network about the profit maximization. This study can apply to GSM(Global System for Mobile Communication) which has 70% portion in the world. Hierarchical network design using GA(Genetic Algorithm) is the first three-tier (Macro, Micro, Pico) model, We increase the reality through applying to EMC (Electromagnetic Compatibility Constraints). Computational experiments on 72 problem instances which have 15${\sim}$40 candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers more than 90% of the demand.

  • PDF

Channel Assignment Sequence Optimization Under Fixed Channel Assignment Scheme (채널 고정 할당 방식 이동통신 시스템에서 채널 할당 순서 최적화)

  • Han, Jung-Hee
    • Journal of Information Technology Services
    • /
    • v.9 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • In this paper, we consider a channel ordering problem that seeks to maximize the service quality in mobile radio communication systems. If a base station receives a connection request from a mobile user, one of the empty channels belonging to the base station is assigned to the mobile user. In case multiple empty channels are available, we can choose one that incurs least interference with other channels assigned to adjacent base stations. However, note that a pair of channels that are not separated enough generates interference only if both channels are assigned to mobile users. That is, interference between channels may vary depending on the channel assignment sequence for each base station and on the distribution of mobile users. To find a channel assignment sequence that seems to generate minimum interference, we develop an optimization model considering various scenarios of mobile user distribution. Simulation results show that channel assignment sequence determined by the scenario based optimization model significantly reduces the interference provided that scenarios and interference cost are properly generated.

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.

Traffic Flow Estimation based Channel Assignment for Wireless Mesh Networks

  • Pak, Woo-Guil;Bahk, Sae-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.68-82
    • /
    • 2011
  • Wireless mesh networks (WMNs) provide high-speed backbone networks without any wired cable. Many researchers have tried to increase network throughput by using multi-channel and multi-radio interfaces. A multi-radio multi-channel WMN requires channel assignment algorithm to decide the number of channels needed for each link. Since the channel assignment affects routing and interference directly, it is a critical component for enhancing network performance. However, the optimal channel assignment is known as a NP complete problem. For high performance, most of previous works assign channels in a centralized manner but they are limited in being applied for dynamic network environments. In this paper, we propose a simple flow estimation algorithm and a hybrid channel assignment algorithm. Our flow estimation algorithm obtains aggregated flow rate information between routers by packet sampling, thereby achieving high scalability. Our hybrid channel assignment algorithm initially assigns channels in a centralized manner first, and runs in a distributed manner to adjust channel assignment when notable traffic changes are detected. This approach provides high scalability and high performance compared with existing algorithms, and they are confirmed through extensive performance evaluations.

Interference-Aware Channel Assignment Algorithm in D2D overlaying Cellular Networks

  • Zhao, Liqun;Wang, Hongpeng;Zhong, Xiaoxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1884-1903
    • /
    • 2019
  • Device-to-Device (D2D) communications can provide proximity based services in the future 5G cellular networks. It allows short range communication in a limited area with the advantages of power saving, high data rate and traffic offloading. However, D2D communications may reuse the licensed channels with cellular communications and potentially result in critical interferences to nearby devices. To control the interference and improve network throughput in overlaid D2D cellular networks, a novel channel assignment approach is proposed in this paper. First, we characterize the performance of devices by using Poisson point process model. Then, we convert the throughput maximization problem into an optimal spectrum allocation problem with signal to interference plus noise ratio constraints and solve it, i.e., assigning appropriate fractions of channels to cellular communications and D2D communications. In order to mitigate the interferences between D2D devices, a cluster-based multi-channel assignment algorithm is proposed. The algorithm first cluster D2D communications into clusters to reduce the problem scale. After that, a multi-channel assignment algorithm is proposed to mitigate critical interferences among nearby devices for each D2D cluster individually. The simulation analysis conforms that the proposed algorithm can greatly increase system throughput.

Density Minimization for the Assignment of P-color Points (P-가지 색을 가진 점들의 할당에 대한 밀도 최소화)

  • Kim, Jae-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1981-1986
    • /
    • 2014
  • The problem studied in this paper is the channel routing problem to assign points with p colors on the upper row of the channel to points on the lower row in order to minimize its density. The case that the points on the upper row has an identical color or only two colors is studied in [1, 2]. This paper generalizes that to the points with p colors. First, we consider the problem to determine whether there is an assignment with density less than or equal to d, when an arbitrary d is given. We show that the problem is solved in O(p(n+m)log(n+m)) time. Using this result, we resolve the problem to fine an assignment with a minimum density.