• Title/Summary/Keyword: Channel Performance

Search Result 6,779, Processing Time 0.034 seconds

An Energy-Efficient Concurrency Control Method for Mobile Transactions with Skewed Data Access Patterns in Wireless Broadcast Environments (무선 브로드캐스트 환경에서 편향된 엑세스 패턴을 가진 모바일 트랜잭션을 위한 효과적인 동시성 제어 기법)

  • Jung, Sung-Won;Park, Sung-Geun;Choi, Keun-Ha
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.69-85
    • /
    • 2006
  • Broadcast has been often used to disseminate the frequently requested data efficiently to a large volume of mobile clients over a single or multiple channels. Conventional concurrency control protocols for mobile transactions are not suitable for the wireless broadcast environments due to the limited bandwidth of the up-link communication channel. In wireless broadcast environments, the server often broadcast different data items with different frequency to incorporate the data access patterns of mobile transactions. The previously proposed concurrency control protocols for mobile transactions in wireless broadcast environments are focused on the mobile transactions with uniform data access patterns. However, these protocols perform poorly when the data access pattern of update mobile transaction are not uniform but skewed. The update mobile transactions with skewed data access patterns will be frequently aborted and restarted due 4o the update conflict of the same data items with a high access frequency. In this paper, we propose an energy-efficient concurrence control protocol for mobile transactions with skewed data access as well as uniform data access patterns. Our protocol use a random back-off technique to avoid the frequent abort and restart of update mobile transactions. We present in-depth experimental analysis of our method by comparing it with existing concurrency control protocols. Our performance analysis show that it significantly decrease the average response time, the amount of upstream and downstream bandwidth usage over existing protocols.

Study on the Effect of Product Line Pricing on Loading Efficiency and Logistics Cost (상품라인별 가격결정이 적재효율 및 물류비에 미치는 영향에 관한 연구)

  • Jung, Sung-Tae;Yoon, Nam-Soo;Han, Kyu-Chul
    • Journal of Distribution Science
    • /
    • v.12 no.8
    • /
    • pp.55-69
    • /
    • 2014
  • Purpose - Despite the importance of price, many companies do not implement pricing policies smoothly, because typical price management strategies insufficiently consider logistics efficiency and an increase in logistics costs due to logistics waste. This study attempts to examine the effect of product line pricing, which corresponds to product mix pricing, on logistics efficiency in the case of manufacturer A, and analyzes how logistics performance changes in response to these variables. Research design, data, and methodology - This study, based on the case of manufacturer A, involved research through understanding the current status, analyses, and then proposing improvement measures. Among all the products of manufacturer A, product group B was selected as the research object, and its distribution channel and line pricing were examined. As a result of simulation, for products with low loading efficiency, improvement measures such as changing the number of bags in the box were suggested, and a quantitative analysis was conducted on how these measures influence logistics costs. The TOPS program was used for the Pallet loading efficiency simulation tool in this study. To prevent products from protruding out of the pallet, the maximum measurement was set as 0.0mm, and loading efficiency was based on the pallet area, and not volume. In other words, its size (length x width) was focused upon, following the purpose of this study and, then, the results were obtained. Results - As a result of the loading efficiency simulation, when the number of bags in the box was changed for 36 products with low average loading efficiency of 73.7%, as shown in

    , loading efficiency improved to 89.9%. Further, from calculating logistics cost based on the cost calculation standard of manufacturer A, the amount of annual logistics cost reduction amounted to 101,458,084 KRW. Given that the sum of the logistics cost of the product group B of manufacturing enterprises A is 400,340,850 KRW, it can be reduced by 25%, to 298,882,766 KRW. Although many methods improve loading efficiency, this study proved that logistics cost could be reduced by changing the number of bags within boxes. If this measure is applied to other items, visible logistics cost reduction effects will be realized through improvements in loading efficiency. Conclusions - Future pricing policies should consider their correlation with quality, loading efficiency, product specifications, and logistics standardization to prevent logistics waste, enabling management to improve earnings for companies. Thus, when companies decide pricing policies for new products, the aspects of merchandising and marketing should take priority; however, the aspect of logistics also needs to be considered as significant. Measures revealed by the study results are not only the responsibilities of manufacturing enterprises. Pricing policy agreements between manufacturing enterprises and distribution companies, and logistics factors related to price determination should be considered; further, governments should also support them for their collaborations. This will enable consumers to purchase quality products with low prices.

  • Performance Verification of WAVE Communication Technology for Railway Application (차량용 무선통신기술(WAVE)의 철도 적용을 위한 성능검증)

    • Kim, Keum-Bee;Ryu, Sang-Hwan;Choi, Kyu-Hyoung
      • Journal of the Korean Society for Railway
      • /
      • v.19 no.4
      • /
      • pp.456-467
      • /
      • 2016
    • Wireless Access in Vehicular Environments (WAVE) communication technology, which provides vehicleto-vehicle and vehicle-to-infrastructure communication and offers safe and convenient service, has been developed for application to an Intelligent Transport System (ITS). This paper provides field test results on a study of the feasibility of WAVE technology application to railway communication systems. A test railway communication system based on WAVE technology has been built along the Daebul line and a newly developed EMU. Field tests have been carried out according to the communication function requirements for LTE - R. The test results show that the railway communication system based on WAVE technology meets the functional requirements: maximum transmission length is 730m, maximum transfer delay is 5.69ms, and maximum interruption time is 1.36s; other tests including throughput test, video data transmission test, VoIP data test, and channel switching test also produced results that meets the functional requirements. These results suggest that WAVE technology can be applied to the railway communication system, enabling Vehicle-to-Wayside communication.

    Exploiting GOCI-II UV Channel to Observe Absorbing Aerosols (GOCI-II 자외선 채널을 활용한 흡수성 에어로졸 관측)

    • Lee, Seoyoung;Kim, Jhoon;Ahn, Jae-Hyun;Lim, Hyunkwang;Cho, Yeseul
      • Korean Journal of Remote Sensing
      • /
      • v.37 no.6_1
      • /
      • pp.1697-1707
      • /
      • 2021
    • On 19 February 2020, the 2nd Geostationary Ocean Color Imager (GOCI-II), a maritime sensor of GEO-KOMPSAT-2B, was launched. The GOCI-II instrument expands the scope of aerosol retrieval research with its improved performance compared to the former instrument (GOCI). In particular, the newly included UV band at 380 nm plays a significant role in improving the sensitivity of GOCI-II observations to the absorbing aerosols. In this study, we calculated the aerosol index and detected absorbing aerosols from January to June 2021 using GOCI-II 380 and 412 nm channels. Compared to the TROPOMI aerosol index, the GOCI-II aerosol index showed a positive bias, but the dust pixels still could be clearly distinguished from the cloud and clear pixels. The high GOCI-II aerosol index coincided with ground-based observations indicating dust aerosols were detected. We found that 70.5% of dust and 80% of moderately-absorbing fine aerosols detected from the ground had GOCI-II aerosol indices larger than the 75th percentile through the whole study period.

    Development of Wide-Band Planar Active Array Antenna System for Electronic Warfare (전자전용 광대역 평면형 능동위상배열 안테나 시스템 개발)

    • Kim, Jae-Duk;Cho, Sang-Wang;Choi, Sam Yeul;Kim, Doo Hwan;Park, Heui Jun;Kim, Dong Hee;Lee, Wang Yong;Kim, In Seon;Lee, Chang Hoon
      • The Journal of Korean Institute of Electromagnetic Engineering and Science
      • /
      • v.30 no.6
      • /
      • pp.467-478
      • /
      • 2019
    • This paper describes the development and measurement results of a wide-band planar active phase array antenna system for an electronic warfare jamming transmitter. The system is designed as an $8{\times}8$ triangular lattice array using a $45^{\circ}$ slant wide-band antenna. The 64-element transmission channel is composed of a wide-band gallium nitride(GaN) solid state power amplifier and a gallium arsenide(GaAs) multi-function core chip(MFC). Each GaAs MFC includes a true-time delay circuit to avoid a wide-band beam squint, a digital attenuator, and a GaAs drive amplifier to electronically steer the transmitted beam over a ${\pm}45^{\circ}$ azimuth angle and ${\pm}25^{\circ}$ elevation angle scan. Measurement of the transmitted beam pattern is conducted using a near-field measurement facility. The EIRP of the designed system, which is 9.8 dB more than the target EIRP performance(P), and the ${\pm}45^{\circ}$ azimuth and ${\pm}25^{\circ}$ elevation beam steering fulfill the desired specifications.

    Performance Improvement of Power Attacks with Truncated Differential Cryptanalysis (부정차분을 이용한 전력분석 공격의 효율 향상*)

    • Kang, Tae-Sun;Kim, Hee-Seok;Kim, Tae-Hyun;Kim, Jong-Sung;Hong, Seok-Hie
      • Journal of the Korea Institute of Information Security & Cryptology
      • /
      • v.19 no.1
      • /
      • pp.43-51
      • /
      • 2009
    • In 1998, Kocher et al. introduced Differential Power Attack on block ciphers. This attack allows to extract secret key used in cryptographic primitives even if these are executed inside tamper-resistant devices such as smart card. At FSE 2003 and 2004, Akkar and Goubin presented several masking methods, randomizing the first few and last few($3{\sim}4$) rounds of the cipher with independent random masks at each round and thereby disabling power attacks on subsequent inner rounds, to protect iterated block ciphers such as DES against Differential Power Attack. Since then, Handschuh and Preneel have shown how to attack Akkar's masking method using Differential Cryptanalysis. This paper presents how to combine Truncated Differential Cryptanalysis and Power Attack to extract the secret key from intermediate unmasked values and shows how much more efficient our attacks are implemented than the Handschuh-Preneel method in term of reducing the number of required plaintexts, even if some errors of Hamming weights occur when they are measured.

    Three Phase Dynamic Current Mode Logic against Power Analysis Attack (전력 분석 공격에 안전한 3상 동적 전류 모드 로직)

    • Kim, Hyun-Min;Kim, Hee-Seok;Hong, Seok-Hee
      • Journal of the Korea Institute of Information Security & Cryptology
      • /
      • v.21 no.5
      • /
      • pp.59-69
      • /
      • 2011
    • Since power analysis attack which uses a characteristic that power consumed by crypto device depends on processed data has been proposed, many logics that can block these correlation originally have been developed. DRP logic has been adopted by most of logics maintains power consumption balanced and reduces correlation between processed data and power consumption. However, semi-custom design is necessary because recently design circuits become more complex than before. This design method causes unbalanced design pattern that makes DRP logic consumes unbalanced power consumption which is vulnerable to power analysis attack. In this paper, we have developed new logic style which adds another discharge phase to discharge two output nodes at the same time based on DyCML to remove this unbalanced power consumption. Also, we simulated 1bit fulladder to compare proposed logic with other logics to prove improved performance. As a result, proposed logic is improved NED and NSD to 60% and power consumption reduces about 55% than any other logics.

    A novel power trace aligning method for power analysis attacks in mobile devices (모바일 기기에서의 전력 분석 공격을 위한 새로운 전력 신호 정렬 방법)

    • Lee, Yu-Ri;Kim, Wan-Jin;Lee, Young-Jun;Kim, Hyoung-Nam
      • Journal of the Korea Institute of Information Security & Cryptology
      • /
      • v.21 no.1
      • /
      • pp.153-166
      • /
      • 2011
    • Recent trends in mobile device market whose services are rapidly expanding to provide wireless internet access are drawing people's attention to mobile security. Especially, since threats to information leakage are reaching to the critical level due to the frequent interchange of important data such as personal and financial information through wireless internet, various encryption algorithms has been developed to protect them. The encryption algorithms confront the serious threats by the appearance of side channel attack (SCA) which uses the physical leakage information such as timing, and power consumption, though the their robustness to threats is theoretically verified. Against the threats of SCA, researches including the performance and development direction of SCA should precede. Among tile SCA methods, the power analysis (PA) attack overcome this misalignment problem. The conventional methods require large computational power and they do not effectively deal with the delay changes in a power trace. To overcome the limitation of the conventional methods, we proposed a novel alignment method using peak matching. By computer simulations, we show the advantages of the proposed method compared to the conventional alignment methods.

    CNN Based Spectrum Sensing Technique for Cognitive Radio Communications (인지 무선 통신을 위한 합성곱 신경망 기반 스펙트럼 센싱 기법)

    • Jung, Tae-Yun;Lee, Eui-Soo;Kim, Do-Kyoung;Oh, Ji-Myung;Noh, Woo-Young;Jeong, Eui-Rim
      • Journal of the Korea Institute of Information and Communication Engineering
      • /
      • v.24 no.2
      • /
      • pp.276-284
      • /
      • 2020
    • This paper proposes a new convolutional neural network (CNN) based spectrum sensing technique for cognitive radio communications. The proposed technique determines the existence of the primary user (PU) by using energy detection without any prior knowledge of the PU's signal. In the proposed method, the received signal is high-rate sampled to sense the entire spectrum bands of interest. After that, fast Fourier transform (FFT) of the signal converts the time domain signal to frequency domain spectrum and by stacking those consecutive spectrums, a 2 dimensional signal is made. The 2 dimensional signal is cut by the sensing channel bandwidth and inputted to the CNN. The CNN determines the existence of the primary user. Since there are only two states (existence or non-existence), binary classification CNN is used. The performance of the proposed method is examined through computer simulation and indoor experiment. According to the results, the proposed method outperforms the conventional threshold-based method by over 2 dB.

    3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

    • Kim, Byungjoo;Paik, Joongcheol
      • Journal of Korea Water Resources Association
      • /
      • v.54 no.11
      • /
      • pp.943-953
      • /
      • 2021
    • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.