• Title/Summary/Keyword: Channel Identification

Search Result 252, Processing Time 0.025 seconds

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

Joint Blind Data/Channel Estimation Based on Linear Prediction

  • Ahn, Kyung-Seung;Byun, Eul-Chool;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.869-872
    • /
    • 2001
  • Blind identification and equalization of communication channel is important because it does not need training sequence, nor does it require a priori channel information. So, we can increase the bandwidth efficiency. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind channel estimator and equalizer length mismatch as well as for its simple adaptive algorithms. In this paper, we propose method for fractionally spaced blind equalizer with arbitrary delay using one-step forward prediction error filter from second-order statistics of the received signals for SIMO channel. Our algorithm utilizes the forward prediction error as training sequences for data estimation and desired signal for channel estimation.

  • PDF

Vibration Filter Using Vector Channel Periodic Lattice

  • Hwang, Won-Gul;Im, Hyung-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2043-2051
    • /
    • 2006
  • This paper considered identification of vibration characteristics of flexible structure with vector channel periodic lattice filter. We present an algorithm for AR coefficients for the vector-channel lattice filters, and characteristic equation and transfer function are derived from these coefficients. Vibration lattice filter is then constructed from the vector channel lattice filter, and performance of this vibration filter is tested with a test signal which is a combination of many sine waves to compare the performance of scalar and vector channel lattice. Also it is applied to the cantilever data to identify properties of the system, such as natural frequencies and damping ratios, to show its performance.

A Design of Initial Cell Searcher for 3GPP LTE Downlink System (3GPP LTE 하향링크 시스템을 위한 초기 셀 탐색기 설계)

  • Shin, Kyung-Chan;Im, Se-Bin;Ok, Kwang-Man;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.733-742
    • /
    • 2008
  • In 3GPP LTE downlink system, initial cell search is essential for mobile station to connect to base station. In order to obtain information of the base station, the mobile station detects frame timing, frequency offset, and cell identification using primary synchronization channel(PSC) and secondary synchronization channel(SSC), which are defined in downlink OFDMA specification. In this paper, we analyze various detection algorithms in practical environment of inter-cell-interference, frequency offset, and multi-path fading channel and propose the optimal algorithm. Simulation results show that partial correlation method (for PSC acquisition) and interference cancellation method (for SSC detection) are the most superior algorithms among the applicable algorithms. Employ these two algorithms for receiver design, initial cell search is performed with 99% probability within 70ms in the channel environment considered.

CELL SEARCH AND PERFORMANCE ANALYSIS OF W-CDMA SYSTEM IN REALISTIC MULTIPATH CHANNEL ENVIRONMENTS (광대역 다중경로 채널환경에서 W-CDMA 시스템의 셀 탐색과 성능분석)

  • 박대식;김병학;우연식;김철성
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.591-594
    • /
    • 2001
  • In the W-CDMA system, cell search is one of the imporant functions of the mobile station searching for a cell and achieving spreading code and time synchronization to its downlink scrembling code. For the methods of cell search to optimize codes, three stages are considered: 1) slot synchronization, 2) frame synchronization, and 3) scrambling code identification. Channels for cell search are Primary Synchronization Channel (P-SCH), Secondary Synchronization Channel(S-SCH), and Common Pilot Channel (CPICH). In this paper, cell search is analyzed based on simulation. Rake receiver provides improvement of Performance as an increase of bandwidth because there are more available multipaths. In this paper, the performance of W-CDMA system employing RAKE receiver is evaluated by computer simulation over the types of ITU_R wideband channel model and spreading rate. The result shows that the performance of CDMA adapting RAKE receiver is improved by the increase of multipath components in equal level of the received power.

  • PDF

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

Frequency-Temporal Filtering for a Robust Audio Fingerprinting Scheme in Real-Noise Environments

  • Park, Man-Soo;Kim, Hoi-Rin;Yang, Seung-Hyun
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.509-512
    • /
    • 2006
  • In a real environment, sound recordings are commonly distorted by channel and background noise, and the performance of audio identification is mainly degraded by them. Recently, Philips introduced a robust and efficient audio fingerprinting scheme applying a differential (high-pass filtering) to the frequency-time sequence of the perceptual filter-bank energies. In practice, however, the robustness of the audio fingerprinting scheme is still important in a real environment. In this letter, we introduce alternatives to the frequency-temporal filtering combination for an extension method of Philips' audio fingerprinting scheme to achieve robustness to channel and background noise under the conditions of a real situation. Our experimental results show that the proposed filtering combination improves noise robustness in audio identification.

  • PDF

A New RFID Tag Identification Protocol Utilizing Collision Patterns (충돌 패턴을 고려한 RFID 태그 인식 프로토콜)

  • Park, Young-Jae;Kim, Young-Beom
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.98-104
    • /
    • 2012
  • In RFID Systems, collisions between multiple tags frequently arise due to simultaneous responses from multiple tags using the same communication channel. Most of anti-collision protocols such as QT regard these collisions as useless cycles, thereby wasting the channel bandwidth. In this paper, we propose a new anti-collision protocol, namely ASP (Adjustable splitting by patterns of collisions) protocol that utilizes the patterns collision for noticeable performance enhancements.

Obstacle Identification by Parabolic Curve Fitting using Ultrasonic Sensors Arranged on Ring Frame (링 프레임형 초음파 센서의 포물선 피팅에 의한 장애물 식별)

  • Jang, Jin-Su;Park, Tai-Jin;Lim, Zhong-Soo;Joo, Moon-G.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.934-939
    • /
    • 2012
  • This paper proposes a new algorithm for ultrasonic sensors arranged on ring frame to identify obstacles surrounding itself by TOFs (time of flight). The ring frame has multiple channels consisting of a transmitter and a receiver. When the transmitter of a selected channel transmits ultrasonic signal, the TOFs of reflected signals from obstacles are acquired by the receiver of the channel. The process continues for all channels consecutively. Then, by using parabolic curve fitting of TOFs of all channel, the proposed algorithm not only calculates distances from multiple obstacles, but also identifies if the shape of obstacles are point or plane by the coefficients of the curve. By the experiment using 16 ultrasonic transceivers on the ring frame in the environment of two poles and two planes, we show the feasibility of the proposed scheme.

Contactless User Identification System using Multi-channel Palm Images Facilitated by Triple Attention U-Net and CNN Classifier Ensemble Models

  • Kim, Inki;Kim, Beomjun;Woo, Sunghee;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • In this paper, we propose an ensemble model facilitated by multi-channel palm images with attention U-Net models and pretrained convolutional neural networks (CNNs) for establishing a contactless palm-based user identification system using conventional inexpensive camera sensors. Attention U-Net models are used to extract the areas of interest including hands (i.e., with fingers), palms (i.e., without fingers) and palm lines, which are combined to generate three channels being ped into the ensemble classifier. Then, the proposed palm information-based user identification system predicts the class using the classifier ensemble with three outperforming pre-trained CNN models. The proposed model demonstrates that the proposed model could achieve the classification accuracy, precision, recall, F1-score of 98.60%, 98.61%, 98.61%, 98.61% respectively, which indicate that the proposed model is effective even though we are using very cheap and inexpensive image sensors. We believe that in this COVID-19 pandemic circumstances, the proposed palm-based contactless user identification system can be an alternative, with high safety and reliability, compared with currently overwhelming contact-based systems.