• Title/Summary/Keyword: Changjiang diluted water

Search Result 34, Processing Time 0.02 seconds

Effect of expanding low-salinity water in the East China Sea on underwater sound propagation (동중국해 저염분수의 확장이 수중 음파 전달에 미치는 영향)

  • Bum-Jun Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • The salinity of sea water is known as a less influencing variable in the calculation of the sound speed of the sea water. This study investigated how the low salinity of sea water affects the vertical structure of the sound speed near the mouth of the Yangtze (Changjiang) River when the diluted fresh water extends toward the East China Sea in the summer. As a result of comparing two types of sound speeds considered measured and fixed salinity, sound speeds appeared distinguishable when the halocline formed steeper than the thermocline due to Yangtze-River Diluted Water (YRDW). In addition, unlikely with fixed salinity conditions, when measured salinity was considered, an underwater sound channel appeared in the middle of the thermocline of which the source depth is located. Accordingly, considering the salinity, this study suggests using Expendable Conductivity Temperature Depth (XCTD) and Expendable Sound Velocimeter (XSV) rather than Expandable Bathy Thermograph (XBT) when calculating sound speed because of the strong halocline due to YRDW in the summer.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

An Analysis on Observational Surface and upper layer Current in the Yellow Sea and the East China Sea

  • Kui, Lin;Binghuo;Tang, Yuxiang
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2002
  • The characteristics of surface circulation in the Yellow Sea and the East China Sea are discussed by analyzing a great deal of current data observed by 142 sets of mooring buoy and 58 sets of drifters trajectories collected in the Yellow Sea and the East China Sea through domestic and abroad measurements. Some major features are demonstrated as bellow: 1) Tsushima Warm Current flows away from the Kuroshio and has multiple sources in warm half year and comes only from Kuroshio surface water in cold half year. 2) Taiwan Warm Current comes mainly from the Taiwan Strait Water in warm half year and comes from the intruded Kuroshio surface water and branches near 27N in cold half year. 3) The Changjiang Diluted Water turns towards Cheju Island in summer and flows southward along the coastal line in winter. 4) The study sea area is an eddy developing area, especially in the southern area of Cheju Island and northern area of Taiwan.

The Characteristics of Yellow Sea Bottom Cold Water in September, 2006 (2006년 9월 황해저층냉수괴의 분포 특성)

  • Choi, Young-Chan
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.3
    • /
    • pp.425-432
    • /
    • 2011
  • In order to understand the characteristics of the distribution and the nutrients of the Yellow Sea Bottom Cold Water during summer to fall, temperature, salinity and nutrients have been investigated in the fifteen stations in the Yellow Sea. In september, the Changjiang diluted water with more than $20^{\circ}C$ distributed in the surface and the Yellow Sea Bottom Cold Water distributed in the layer below 30m depth with less than $10^{\circ}C$. Specially, water mass with less than $5^{\circ}C$ in the layer below 50m depth expanded southward down to the north latitude of $35^{\circ}$ with expanding more to the coasts of China than to the coasts of Korea. The salinity of the cold water mass with $8^{\circ}C$ in the deep layer of more than 50m depth was relatively high as 33.5 psu and expanded northward forming fronts of temperature and salinity. The concentration of total inorganic nitrogen was two times higher in the cold water mass than in the surface water, which means that resolution and consumption were low due to cold temperature in the bottom layer. In conclusion, the cold water expanded southward down to the north latitude of $35^{\circ}$ by September and had high concentration of nutrients.

A Numerical Experiment on the Dispersion of the Changjiang River Plume

  • Bang, In-Kweon;Lie, Heung-Jae
    • Journal of the korean society of oceanography
    • /
    • v.34 no.4
    • /
    • pp.185-199
    • /
    • 1999
  • With a realistic geography and topography the Princeton Ocean Model is used to study the effects of topography, wind and time-varying Chanajiang (Yangtze) River discharge on the dispersion of the Chanaiiang River plume in the Yellow and East China Seas. The topographic feature of deepening offshore suppresses the offshore expansion of the discharged low salinity water while spreading along the coast is not hindered. Also the spreading of the Chanajiang River plume is very sensitive to wind conditions and the southerly wind is most responsible for the eastward expansion toward the Cheju Island. It is also shown that the influence of the Chanajiang River Diluted Water on the hydrography and circulation of the Yellow Sea including the South Sea of Korea is substantial even in the absence of tide, wind and current.

  • PDF

Spatial distribution of heterotrophic bacteria and the role of microbial food web in the northern East China Sea in summer (하계 동중국해 북부해역에서 종속영양박테리아의 분포 특성 및 미생물 먹이망의 역할)

  • Bomina Kim;Seok-Hyun Youn
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.89-100
    • /
    • 2023
  • We investigated the spatial distribution of heterotrophic bacteria associated with different water masses in the northern East China Sea(ECS) in summer. The surface water masses were divided into the Changjiang Diluted Water (CDW) and high salinity water (HSW). In the CDW region, the concentrations of dissolved inorganic nitrogen (DIN) and chlorophyll-a (Chl-a), and micro Chl-a contribution were high; and bacterial abundance (BA) and ciliate abundance (CA) were also high. In the HSW region with relatively low DIN concentrations, Chl-a concentration and micro Chl-a contribution were low, but pico Chl-a contribution was increased compared to those in the CDW region. BA did not show any significant difference from the CDW region, but CA was decreased. BA showed a positive correlation with Chl-a concentration in the CDW region; however, it did not show a significant correlation with Chl-a concentration in the HSW region. The ratio of bacterial carbon biomass/phytoplankton carbon biomass was exponentially increased with a decrease in the Chl-a concentration. Compared to the past (1990-2000s), the surface phosphate concentrations and the size of dominant phytoplankton have recently decreased in the ECS. Considering this trend of nutrient decrease and miniaturization of the phytoplankton, our results indicate that changes in the strength of the oligotrophic water mass could alter the function of the microbial food web.

Formation and Distribution of Low Salinity Water in East Sea Observed from the Aquarius Satellite (Aquarius 염분 관측 위성에 의한 동해 저염수의 형성과 유동 연구)

  • Lee, Dong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.187-198
    • /
    • 2018
  • The monthly salinity maps from Aquarius satellite covering the entire East Sea were produced to analyze the low-salinity water appearing in fall every year. The low-salinity water in the northern East Sea began to appear in May-June, spreading southward along the coast and eastward north of the subpolar front. Low-salinity water from the East China Sea entered the East Sea through the Korea Strait from July to September and was mixed with low-salinity water from the northern East Sea in the Ulleung Basin. The strength of the low-salinity water from the East China Sea was dependent on the strength of the southerly wind of the East China Sea in July-August. The salinity reaches a minimum in September with a distribution parallel to the latitude of $37.5^{\circ}N$. In October, low salinity water is distributed along the mean current path and subpolar front and the entire East Sea is covered with the low salinity water in November. Water with salinity larger than 34 psu starts to flow into the East Sea through the Korea Strait in December and it expands gradually northward up to the subpolar front in January- February.

Distribution and Circulation of Autumn Low-salinity Water in the East Sea (동해의 가을철 저염수 분포 및 유동)

  • Lee, Dong-Kyu;Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Seawater with salinity of 32.5 psu or less is observed in the southern Japan/East Sea (JES) every autumn. It is confined to a surface layer 30-45 m in depth that expands to cover the entire JES in October. Two sources of "autumn low-salinity water" have been identified from historical hydrographic data in the western JES: East China Sea (ECS) water mixed with fresh water discharge from the Yangtze River (Changjiang) and seawater diluted with melted sea ice in the northern JES. Low-salinity water inflow from the ECS begins in June and reaches its peak in September. Low-salinity water from the northern JES expands southward along the coast, and its horizontal distribution varies among years. A rare observational study of the entire JES in October 1969 indicated that water with salinity less than 33.0 psu covered the southwestern JES; the lowest salinity water was found near the Ulleung Basin. In October 1995, the vertical distribution of salinity observed in a meridional section revealed that water with salinity of 33.6 psu or less was present in the area north of the subpolar front.

Using Tintinnid Distribution for Monitoring Water Mass Changes in the Northern East China Sea (북부 동중국해 수괴 변화 감시를 위한 유종섬모류 분포 적용)

  • Kim, Young-Ok;Noh, Jae-Hoon;Lee, Tae-Hee;Jang, Pung-Guk;Ju, Se-Jong;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • Tintinnid species distribution has been monitored in the northern East China Sea (ECS) in the summer of 2006 through 2011. This is used to understand the water mass movements in the northern ECS. The warm oceanic tintinnid species had largely spread in 2007 in the area, indicating that there was greater warm water extension into the northern ECS. However the extension of neritic water within the Changjiang diluted water mass has strengthened in 2008 and 2010 because the neritic species distribution had relatively grown in both years. These annual results based on the biological indicators of tintinnid species are well matched with the salinity change in the area. The warm oceanic species, Dadayiella ganymedes had frequently occurred over the study years and had shown a significant relationship with the salinity change. This is valuable as a key stone species for monitoring the intrusion of the Kuroshio within the northern ECS. Information from tintinnid biological indicators can support physical oceanography data to confirm ambiguous water mass properties.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.