DOI QR코드

DOI QR Code

Spatial distribution of heterotrophic bacteria and the role of microbial food web in the northern East China Sea in summer

하계 동중국해 북부해역에서 종속영양박테리아의 분포 특성 및 미생물 먹이망의 역할

  • Bomina Kim (Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science) ;
  • Seok-Hyun Youn (Oceanic Climate and Ecology Research Division, National Institute of Fisheries Science)
  • 김보미나 (국립수산과학원 기후변화연구과) ;
  • 윤석현 (국립수산과학원 기후변화연구과)
  • Received : 2023.03.06
  • Accepted : 2023.03.17
  • Published : 2023.03.31

Abstract

We investigated the spatial distribution of heterotrophic bacteria associated with different water masses in the northern East China Sea(ECS) in summer. The surface water masses were divided into the Changjiang Diluted Water (CDW) and high salinity water (HSW). In the CDW region, the concentrations of dissolved inorganic nitrogen (DIN) and chlorophyll-a (Chl-a), and micro Chl-a contribution were high; and bacterial abundance (BA) and ciliate abundance (CA) were also high. In the HSW region with relatively low DIN concentrations, Chl-a concentration and micro Chl-a contribution were low, but pico Chl-a contribution was increased compared to those in the CDW region. BA did not show any significant difference from the CDW region, but CA was decreased. BA showed a positive correlation with Chl-a concentration in the CDW region; however, it did not show a significant correlation with Chl-a concentration in the HSW region. The ratio of bacterial carbon biomass/phytoplankton carbon biomass was exponentially increased with a decrease in the Chl-a concentration. Compared to the past (1990-2000s), the surface phosphate concentrations and the size of dominant phytoplankton have recently decreased in the ECS. Considering this trend of nutrient decrease and miniaturization of the phytoplankton, our results indicate that changes in the strength of the oligotrophic water mass could alter the function of the microbial food web.

하계 동중국해 북부해역의 표층은 CDW와 HSW 해역으로 구분되며, CDW 해역은 DIN 농도, 총 Chl-a 농도 및 소형 Chl-a 비중이 높았고, 박테리아와 섬모충류 개체수도 높게 나타났다. 상대적으로 영양염 농도가 낮은 HSW 해역에서는 총 Chl-a 농도가 낮고, CDW 해역에 비해 소형 Chl-a 비중은 감소하고, 초미소 Chl-a 비중이 증가한 것으로 나타났다. 박테리아 개체수는 CDW 해역과 유의한 차이가 나타나지 않았지만, 섬모충류 개체수는 감소한 것으로 나타났다. CDW 해역에서는 박테리아가 식물플랑크톤 외에도 용존유기탄소로부터 유기물을 공급받을 것으로 생각되지만, HSW 해역에서는 박테리아가 초미소식물플랑크톤으로부터 배출되는 유기물에 의존하는 것으로 나타났다. 두 해역 모두에서 박테리아와 섬모충류 간의 유의한 상관성이 관찰되지 않아, 조사해역에서는 박테리아가 섬모충류의 주요 먹이원이 아닌것으로 여겨진다. Chl-a 농도가 감소할수록 박테리아 탄소량/식물플랑크톤 탄소량이 증가했으며, 이는 영양염이 풍부한 CDW 해역에 비해 빈영양 수괴의 영향을 받은 HSW 해역에서는 미생물 먹이망의 역할이 더욱 강하게 작용한다는 것을 가리킨다. 본 연구 결과는 CDW 및 빈영양 대마난류의 세기 변화가 식물플랑크톤의 크기 및 군집 분포에 영향을 미치며, 이에 따라 해양 먹이망 내 미생물 먹이망의 기여도가 다르게 나타난다는 것을 시사한다.

Keywords

Acknowledgement

이 논문은 국립수산과학원의 생태계 구조 변동 구명 및 평가기술 개발 사업(R2023056)의 지원으로 수행되었습니다.

References

  1. Austria ES, CC Lai, CY Ko, KY Lee, HY Kuo, TY Chen, JH Tai and FK Shiah. 2018. Growth-controlling mechanisms on heterotrophic bacteria in the South China Sea shelf: Summer and winter patterns. Terr. Atmos. Ocean. Sci. 29:441-453. https://doi.org/10.3319/tao.2018.01.19.01
  2. Azam F, T Fenchel, JG Field, JS Gray, LA Meyer-Reil and F Thingsted. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-263. https://doi.org/10.3354/meps010257
  3. Calbet A and M Alcaraz. 2009. Microzooplankton, key organisms in the pelagic food web. pp. 227-242. In: Fisheries and Aquaculture(Safran P ed.). Oxford: EOLSS Publications. Paris, France.
  4. Chen CC, GC Gong, KP Chiang, FK Shiah, CC Chung and CC Hung. 2021. Scaling effects of a eutrophic river plume on organic carbon consumption. Limnol. Oceanogr. 66:1867-1881. https://doi.org/10.1002/lno.11729
  5. Chen TY, CC Lai, FK Shiah and GC Gong. 2020. Dissolved ad particulate primary production and subsequent bacterial C consumption in the southern East China Sea. Front. Mar. Sci. 7:713. https://doi.org/10.3389/fmars.2020.00713
  6. Chen YLL, HY Chen, GC Gong, YH Lin, S Jan and M Takahashi. 2004. Phytoplankton production during a summer coastal upwelling in the East China Sea. Cont. Shelf Res. 24:1321-1338. https://doi.org/10.1016/j.csr.2004.04.002
  7. Cho BC and F Azam. 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Mar. Ecol. Prog. Ser. 63:253-259. https://doi.org/10.3354/meps063253
  8. Choi KH, EJ Yang, D Kim, HK Kang, JH Noh and CH Kim. 2012. The influence of coastal waters on distributions of heterotrophic protists in the northern East China Sea, and the impact of protist grazing on phytoplankton. J. Plankton Res. 34:886-904. https://doi.org/10.1093/plankt/fbs046
  9. Cole JJ, S Findlay and ML Pace. 1988. Bacterial production in fresh and saltwater ecosystem overview. Mar. Ecol. Pro. Ser. 43:1-10. https://doi.org/10.3354/meps043001
  10. Conty A, F Garcia-Criado and E Becares. 2007. Changes in bacterial and ciliate densities with trophic status in Mediterranean shallow lakes. Hydrobiologia 584:327-335. https://doi.org/10.1007/s10750-007-0585-x
  11. Cotner JB and BA Biddanda. 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105-121. https://doi.org/10.1007/s10021-001-0059-3
  12. Fukuda R, H Ogawa, T Nagata and I Koike. 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environ. Microbiol. 64:3352-3358. https://doi.org/10.1128/AEM.64.9.3352-3358.1998
  13. Gong GC, J Chang and YH Wen. 1999. Estimation of annual primary production in the Kuroshio waters northeast of Taiwan using a photosynthesis-irradiance model. Deep-Sea Res. I-Oceanogr. Res. Pap. 46:93-108. https://doi.org/10.1016/S0967-0637(98)00057-0
  14. Hyun JH and EJ Yang. 2003. Freezing seawater for the long-term storage of bacterial cells for microscopic enumeration. Korean J. Microbiol. 41:262-265.
  15. Ichikawa H and RC Beardsley. 2002. The current system in the Yellow and East China Seas. J. Oceanogr. 58:77-92. https://doi.org/10.1023/A:1015876701363
  16. Isobe A, Y Fujiwara, PH Chang, K Sugimatsu, M Shimizu, T Matsuno and A Manda. 2004. Intrusion of less saline shelf water into the Kuroshio subsurface layer in the East China Sea. J. Oceanogr. 60:853-863. https://doi.org/10.1007/s10872-005-5778-1
  17. Jang HK, JJ Kang, JH Lee, M Kim, SH Ahn, JY Jeong, MS Yun, IS Han and SH Lee. 2018. Recent primary production and small phytoplankton contribution in the Yellow Sea during the summer in 2016. Ocean Sci. J. 53:509-519. https://doi.org/10.1007/s12601-018-0017-z
  18. Jiang Z, J Chen, F Zhou, L Shou, Q Chen, B Tao, X Yan and K Wang. 2015. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Cont. Shelf Res. 101:71-84. https://doi.org/10.1016/j.csr.2015.04.009
  19. Jiao N, Y Yang, N Hong, Y Ma, S Harada, H Koshikawa and M Watanabe. 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Cont. Shelf Res. 25:1265-1279. https://doi.org/10.1016/j.csr.2005.01.002
  20. Joo H, S Son, JW Park, JJ Kang, JY Jeong, JI Kwon, CK Kang and SH Lee. 2017. Small phytoplankton contribution to the total primary production in the highly productive Ulleung Basin in the East/Japan Sea. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 143:54-61. https://doi.org/10.1016/j.dsr2.2017.06.007
  21. Jurgens K and R Massana. 2008. Protistan grazing on marine bacterioplankton. pp. 383-441. In: Microbial Ecology of the Oceans, Second Edition (Kirchman DL ed.). Wiley-Blackwell. New Jersey. https://doi.org/10.1002/9780470281840.ch11
  22. Kim B, SU An, TH Kim and JH Hyun. 2020. Uncoupling between heterotrophic bacteria and phytoplankton and changes in tropic balance associated with warming of seawater in Gyeonggi Bay, Yellow Sea. Estuaries Coasts 43:535-546. https://doi.org/10.1007/s12237-019-00606-1
  23. Kim J, DH Choi, HE Lee, JY Jeong, J Jeong and JH Noh. 2021. Phytoplankton diversity and community structure devein by the dynamics of the Changjiang Diluted Water plume extension around the Ieodo ocean research station in the summer of 2020. J. Korean Soc. Mar. Environ. Saf. 27:924-942. https://doi.org/10.7837/kosomes.2021.27.7.924
  24. Kirchman DL. 2008. Introduction and overview. pp. 1-26. In: Microbial Ecology of the Oceans, Second Edition (Kirchman DL ed.). Wiley-Blackwell. New Jersey. https://doi.org/10.1002/9780470281840.ch1
  25. Lee CI, YW Jung and HK Jung. 2022. Response of spatial and temporal variations in the Kuroshio Current to water column structure in the Western part of the East Sea. J. Mar. Sci. Eng. 10:1703. https://doi.org/10.3390/jmse10111703
  26. Lee SH, MS Yun, BK Kim, H Joo, SH Kang, CK Kang and TE Whitledge. 2013. Contribution of small phytoplankton to total primary production in the Chukchi Sea. Cont. Shelf Res. 68:43-50. https://doi.org/10.1016/j.csr.2013.08.008
  27. Lee Y, EJ Yang, SH Youn and JK Choi. 2018. Influence of the Changjiang diluted waters on the nanophytoplankton distribution in the northern East China Sea. J. Mar. Biol. Assoc. U.K. 98:1535-1545. https://doi.org/10.1017/S0025315417001163
  28. Legendre L and J Le Fevre. 1995. Microbial food webs and the export of biogenic carbon in oceans. Aquat. Microb. Ecol. 9:67-77. https://doi.org/10.3354/ame009069
  29. Magazzu G and F Decembrini. 1995. Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: A review. Aquat. Microb. Ecol. 9:97-104. https://doi.org/10.3354/ame009097
  30. Maranon E. 2009. Phytoplankton size structure. pp. 445-452. In: Encyclopedia of Ocean Sciences, Second Edition (Steele JH, KK Turekian and SA Thorpe eds.). Elsevier. Amsterdam, Netherlands. https://doi.org/10.1016/B978-012374473-9.00661-5
  31. Moran XAG, A Lopez-Urrutia, A Calvo-Diaz and WKW Li. 2010. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16:1137-1144. https://doi.org/10.1111/j.1365-2486.2009.01960.x
  32. Pak G. 2019. Correlation between the Pacific Decadal Oscillation and East/Japan Sea SST in the autumn. J. Kor. Soc. Oceanogr. 24:509-518. https://doi.org/10.7850/jkso.2019.24.4.509
  33. Park KW, MH Yoo, HJ Oh, SH Youn, KY Kwon and CH Moon. 2019. Distribution characteristics and community structure of pico-phytoplankton in the northern East China Sea in 2016-2017. Korean J. Environ. Biol. 37:93-108. https://doi.org/10.11626/KJEB.2019.37.1.093
  34. Park KW, HJ Oh, SY Moon, MH Yoo and SH Youn. 2022. Effects of miniaturization of the summer phytoplankton community on the marine ecosystem in the Northern East China Sea. J. Mar. Sci. Eng. 10:315. https://doi.org/10.3390/jmse10030315
  35. Parsons TR, Y Maita and CM Lalli. 1984. A Manual of Biological and Chemical Methods for Seawater Analysis. Pergamon Press. Oxford, UK.
  36. Porter KG and YS Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  37. Sarmento H, JM Montoya, E Vazquex-Dominguez, D Vaque and JM Gasol. 2010. Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 365:2137-2149. https://doi.org/10.1098/rstb.2010.0045
  38. Shiah FK, GC Gong and T Xiao. 2006. Effects of Changjiang River summer discharge on bottom-up control of coastal bacterial growth. Aquat. Microb. Ecol. 44:105-113. https://doi.org/10.3354/ame044105
  39. Shiquan L, H Lingfeng and L Jiachang. 2014. Weak coupling between heterotrophic nanoflagellates and bacteria in the Yellow Sea Cold Water Mass area. Acta Oceanol. Sin. 33:125-132. https://doi.org/10.1007/s13131-014-0523-5
  40. Simon M, BC Cho and F Azam. 1992. Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar. Ecol. Prog. Ser. 86:103-110. https://doi.org/10.3354/meps086103
  41. Solic M, D Santic, S Sestanovic, N Bojanic, S Jozic, M Ordulj, AV Tomas and G Kuspilic. 2020. Changes in the trophic pathways within the microbial food web in the global warming scenario: an experimental study in the Adriatic Sea. Microorganisms 8:510. https://doi.org/10.3390/microorganisms8040510
  42. Sun Y, SH Youn, Y Kim, JJ Kang, D Lee, K Kim, HK Jang, N Jo, MS Yun, SK Song and SH Lee. 2022. Interannual variation in phytoplankton community driven by environmental factors in the northern East China Sea. Front. Mar. Sci. 9:769497. https://doi.org/10.3389/fmars.2022.769497
  43. Trombetta T, F Vidussi, C Roques, M Scotti and B Mostajir. 2020. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: warming favors smaller organism interactions and intensifies trophic cascade. Front. Microbiol. 11:502336. https://doi.org/10.3389/fmicb.2020.502336
  44. Wienke SM and JE Cloern. 1987. The phytoplankton component of seston in San Francisco Bay. Neth. J. Sea Res. 21:25-33. https://doi.org/10.1016/0077-7579(87)90020-2
  45. Yang EJ, JK Choi and JH Hyun. 2003. The study on the seasonal variation of microbial community in Kyeonggi Bay, Korea. J. Kor. Soc. Oceanogr. 8:44-57.
  46. Zhang J, SM Liu, JL Ren, Y Wu and GL Zhang. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr. 74:449-478. https://doi.org/10.1016/j.pocean.2007.04.019