• Title/Summary/Keyword: Change of dyeing properties

Search Result 121, Processing Time 0.028 seconds

Natural Dyeing with Walnut Hull(II) - Dyeing Properties of Cotton - (호도외피를 이용한 천연염색(II) - 면섬유의 염색성 -)

  • Shin, Youn-Sook
    • Korean Journal of Human Ecology
    • /
    • v.9 no.3
    • /
    • pp.63-68
    • /
    • 2006
  • Walnut colorants were extracted from walnut hull and their dyeing properties on cotton were investigated. Effect of dyeing conditions on dye uptake and effect of mordanting on dye uptake, color change and colorfastness were explored. Walnut colorants showed low affinity to cotton compared with wool and its isotherm adsorption curve was Freundlich type. It was considered that hydrogen bonding and van der Waal's force were involved in the adsorption of walnut colorants onto cotton. The dyed cotton showed YR color and there was no significant color change as pH changed. The dyed cotton showed generally high colorfastness except fastness to washing and light. Mordanting did not improve dye uptake and colorfastness, and not affect color of the dyed cotton significantly.

  • PDF

Studies on the Natural Dyes(10) -Dyeing properties of safflower yellow for silk fibers- (天然染料에 관한 硏究(10) -홍화 황색소의 견섬유에 대한 염색성-)

  • Cho, Kyung Rae
    • Textile Coloration and Finishing
    • /
    • v.9 no.5
    • /
    • pp.10-18
    • /
    • 1997
  • In order to study the properties of safflower yellow colors, thermodynamic parameters and dyeing properties on the silk in several dyeing conditions were investigated. The uv-visible spectra of safflower yellow colors in several solvents show hypsochromic shift with the polarity of solvent but bathochromic shift with increasing acidity of solution. The apparent diffusion coefficients and standard affinities of dyeing increased with the increase of dyeing temperature. The standard heat of dyeing(${\Delta}H^0$), entropy change(${\Delta}S^0$) and activation energy($E_{act}$) were calculated to be - 1.144kcal/mol, -7.498(5$0^{\circ}C$)~-3.804(9$0^{\circ}C$)cal/molㆍdeg and 0.123kcal/mol, respectively. The concentration of safflower yellow colors in the silk fiber increased with dyeing temperature, time, concentration of colors and acidity of initial dyebath. Silk fabrics were dyed bright yellow by pre-mordanting with tin chloride. Lightfastness of silk fabrics pre-mordanted by tin chloride was not excellent.

  • PDF

A Study on the Dyeability of Natural Dyes of Sustainable Seaweed-Containing Fiber (지속 가능한 해초 함유 섬유의 천연염료 염색성에 관한 연구)

  • Kim, Sojin;Choi, Kyoungmi
    • Journal of Fashion Business
    • /
    • v.26 no.3
    • /
    • pp.87-97
    • /
    • 2022
  • This study investigated the dyeability and color change of the natural dyes of SeaCell, a biodegradable functional fiber that is permanently added to cellulose fibers with natural additives extracted from seaweeds. The natural dyes used in the study are five dyes. Gardenia and turmeric, which are yellow-based natural dyes, Sappan wood and Lac, which are red-based natural dyes, and Indigo, a blue-based natural dye, were selected. The dyeability and color change according to the change of the mordant conditions and the number of times of dyeing were investigated. In addition, the dyeing properties and colors of cotton and silk fibers were compared under the same dyeing conditions as SeaCell. The study results are as follows. It was found that SeaCell had lower dyeing properties than silk, a protein fiber, in gardenia, sappan wood, and lac dyes, but had higher dyeing properties than cotton with the same cellulose component as SeaCell fibers. In the case of turmeric, it showed higher dyeing properties than cotton except for the no mordant condition. In the case of Indigo dye, SeaCell shows the best dyeability, indicating that it is a very suitable fiber for Indigo dyeing. As sustainable functional fibers are continuously developed in the future, natural dyes that are environmentally friendly and human-friendly are actively introduced and commercialized, and it is expected that they can be used as reference materials.

Dyeing Properties of Silk Fabric with Alnus Firma Extracts (오리나무 열매 추출물에 의한 견직물의 염색성 연구)

  • 손보현;장지혜
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.12
    • /
    • pp.109-118
    • /
    • 2002
  • The Purpose of this study was to investigate dyeing properties and color fastness of Ainus firma sieb. et Zucc. Fruit, according to dyeing temperature, dyeing time, dyeing concentrations and various mordants. The results were as follows ; 1. The dyeabilities of the natural colorants extracted from Alnus firma fruit were investigated under various dyeing temperature, dyeing time and dyeing concentration. As a result, the optimum dyeing temperature, time and concentration of silk fabric with Alnus firma fruit were $60^{\circ}C$, 60min and 100%(o.w.f.) respectively. 2. Alnus firma fruit extract dyed reddish purple (RP hue) on the Fe-mordanted silk fabric. In the case of other mordants, silk fabrics dyed yellow (Y hue). 3. Generally, the light color fastness was relatively fair in the silk fabric dyed with the Alnus firma fruit and Fe mordant. The washing color fastness of color change of silk dyeings mordanted with Al, Sn showed 4 grade. However, the dry cleaning color fastness of the silk fabric was fastness was excellent. The rubbing color fastness showed 4 grade at the most of mordants except Cu.

The Novel Functional Chromophores Based on Squarylium Dyes

  • Park, Soo-Youl;Jun, Kun;Oh, Sea-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.428-432
    • /
    • 2005
  • Squarylium or squaraine dyes are derived from 1,2-dihydroxycyclobuten-3,4-dione, otherwise known as squaric acids. They are two principal types: the 1,2-bisdonorsubstituted derivatives, and the 1,3-bisdonorsubstituted derivatives. The former are essentially merocyanines and have no distinctive properties, whereas the latter represent a unique type of chromophore, which is neither a merocyanines nor cyanine and has exceptional light absorption characteristics. They also have many functional applications based on their special properties. Thus it was the objective of this research project to synthesize a range of 1,3-squarylium dyes of widely differing structural types, and to investigate their light absorption and fluorescence properties in general, and the color change properties of appropriate examples in particular. Also in this study, the various pHinduced colour change processes were examined.

Dyeing Behavior of Low Temperature Plasma Treated Wool

  • Kan C.W.
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.262-269
    • /
    • 2006
  • In this paper, the effects of low temperature plasma (LTP) treatment on the dyeing properties of the wool fiber were studied. The wool fibers were treated with oxygen plasma and three types of dye that commonly used for wool dyeing, namely: (i) acid dye, (ii) chrome dye and (iii) reactive dye, were used in the dyeing process. For acid dyeing, the dyeing rate of the LTP-treated wool fiber was greatly increased but the final dyeing exhaustion equilibrium did not show any significant change. For chrome dyeing, the dyeing rate of the LTP-treated wool fiber was also increased but the final dyeing exhaustion equilibrium was only increased to a small extent. In addition, the rate of afterchroming process was similar to the chrome dyeing process. For the reactive dyeing, the dyeing rate of the LTP-treated wool fiber was greatly increased and also the final dyeing exhaustion equilibrium was increased significantly. As a result, it could conclude that the LTP treatment could improve the dyeing behavior of wool fiber in different dyeing systems.

Durable Press Finishing of Silk/Cotton Fabrics with BTCA ( I ) - Effect of Treating Conditions on Physical Properties - (BTCA에 의한 실크/면 교직물의 DP 가공 (I) - 물리적 특성에 미치는 처리 조건의 영향 -)

  • 이문철;조석현
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • Silk/Cotton fabrics were treated with butanetetracarboxylic acid(BTCA) to improve crease recovery and anti-shrinking properties at various curing temperatures and pH values. We investigated the effects of finishing conditions on add-on of BTCA, bending property(E, 2HB), wrinkle recovery angle, shrinkage, and dyeing properties. The Add-on of BTCA increased with increasing curing temperature and concentration. Crease recovery was improved with decreasing shrinkage. Maximum add-on of BTCA was showed at pH 2.5. In case of dyeing and mercerization, silk side treated with BTCA was more flexible than untreated, whereas cotton side was more stiff. In dyeing after mercerization, B and 2HB values were higher and K/S values were doubled nearly. The hand of fabric improved with decreasing B and 2HB by the BTCA treatment. BTCA treatment after reactive dyeing improved crease recovery, and caused no change of color difference. However, BTCA treatment after reactive dyeing didn't improve crease recovery, whereas B and 2HB were decreased considerably by the treatment.

The Natural Dyeing of Silk Fabric with Onion Shell (양파외피에 의한 견직물의 염색)

  • Kim, Sang-Yool
    • The Korean Fashion and Textile Research Journal
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • Dyeing properties of silk fabric with onion shell were studied by investigating the effect of dyeing conditions, such as concentration of onion shell, dyeing temperature, dyeing time and pH, on dye uptakes. And also the effects of mordants and mordanting methods or color change and dye uptakes were investigated. For the practical use, the various color fastness of dyed and mordanted fabric were evaluated. The color fastness was improved when Fe mordant was added.

  • PDF

The Interpratation of Dyeing Behavior of the Easily Dyeable Polyester Yarn under Atmospheric Pressure by Thermodynamic Parameters (열역학적 파라미터에 의한 상압가염형 폴리에스테르 섬유의 염색거동 해석)

  • 김태경;윤석한;신상엽;임용진;조규민
    • Textile Coloration and Finishing
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • In the prior study, the mechanical properties and the dyeability of the easily dyeable polyester grim(EDY) were investigated. In this study, to interpret the dyeing behavior of EDY with C. I. Disperse Violet 1, the thermodynamic parameters of dyeing, such as the standard affinity, the heat of dyeing(the enthalpy change), the entropy change, the diffusion coefficient, and the activation energy of diffusion, were obtained from adsorption isotherms and dyeing rate at various temperatures and compared to these of regular polyester (REG-PET). The heat of dyeing(the enthalpy change) and the entropy change for EDY showed smaller negative values than those for REG-PET. This means that the dye molecules in the EDY are combined more loosely than in the REG-PET and that is due to the flexibility of polymer chains of EDY. The diffusion coefficients of C. I. Disperse Violet 1 into the EDY were larger than those for REG-PET, and the activation energy of diffusion on EDY was smaller than that on REG-PET.

Dyeing of Cotton Knitted Fabrics with Volcanic Ash (II) - The Dyeability Change According to Cationic Agent Treatment - (화산재를 이용한 면 편성물의 염색(II) - 카티온화 처리에 따른 염색성 변화 -)

  • 신인수;유복선
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.4
    • /
    • pp.119-125
    • /
    • 2004
  • In this paper, the effect of the volcanic ash dyed on cotton knitted fabrics was studied in various ways. A cationic agent was used to improve the depth of color of the fabric in the dyeing process. K/S values of dyed fabrics were measured to examine the dyeing properties. Cationic agent pretreatment, followed by dyeing with volcanic ash, was tested. In the dyeing experiment, the effects of a wide range of parameters such as the concentration of cationic agent, treatment time, treatment temperature and treatment pH of the dyebath were studied. Experimental results showed that the pretreatment with cationic agent improved the dyeing properties of cotton knitted fabrics with volcanic ash. At this point, concentration of cationic agent was 4%(on weight of fabric), treatment time was 40minutes, treatment temperature was 80 C and treatment pH of the dyebath was a neutral condition.