• Title/Summary/Keyword: Change in soil quality

Search Result 240, Processing Time 0.024 seconds

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

Effects of Green Manure Crops on Improvement of Chemical and Biological Properties in Soil (토양 화학성 및 생물학성 변화에 대한 녹비작물 시용 효과)

  • Choi, Bong-Su;Jung, Jung-Ah;Oh, Mi-Kyung;Jeon, Sang-Ho;Goh, Hyun-Gwan;Ok, Yong-Sik;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.650-658
    • /
    • 2010
  • We used green manure crops such as hairy vetch, crimson clover, rye, sorghum, and sudan grass by mixing with soils to assess the effects of green manure crops on nutrient supply and soil quality improvement. Temporal changes in soil inorganic nitrogen, carbohydrate, microbial biomass, and humus content were determined as soil quality indicators. Inorganic nitrogen content of the control maintained similar level during the whole period, but it had continually increased until 4 weeks after incorporation (WAI) of green manure crops. Especially, inorganic nitrogen content sharply increased in sudan grass. After incorporation of green manure crops, temporal change of soluble sugar in soils was as follows: it had gradually increased in legume green manure crops-incorporated soils until 7 WAI, which was the highest, and then showed the tendency to be reduced. Meanwhile, it in non-legume green manure crops-incorporated soils rapidly increased after the incorporation, and reached the maximum around 4 WAI. Humic acid by the decomposition of crop residues in green manure crops-incorporated soils was greatly enhanced with the elapsed time of 4 WAI, although it was low at the same level as the control until 2 weeks. In addition, there was a difference in fulvic acid by incorporated crops, fulvic acid in hairy vetch, sorghum and sudan grass showed a similar tendency with the change in humic acid. Our results suggest that soluble sugar, microbial activity and humic acid could be available indicators to evaluate the fertility of green manure crops-incorporated soils.

The extent of soil organic carbon and total nitrogen in forest fragments of the central highlands of Ethiopia

  • Tolessa, Terefe;Senbeta, Feyera
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • Background: Deforestation and degradation are currently affecting the ecosystem services of forests. Among the ecosystem services affected by deforestation and degradation are the amount of soil organic carbon (SOC) and total nitrogen (TN) stored in forest soils which have greater impacts in global climate change. This study aimed at examining the amount of SOC and TN in the forest fragments which were separated from the continuous tracts of forests of Jibat and Chillimo through fragmentation processes over four decades. Methods: We have sampled soils from 15 forest fragments of Chillimo and Jibat in the central highlands of Ethiopia. The soil samples obtained in two separate soil depths (0-30 and 30-60 cm) were bulked, dried, and sieved for analysis. Results: Our results have shown that the two sites (Jibat and Chillimo forest fragments) differed in their SOC and TN contents. While the values for Jibat were found to be 29.89 Mg/ha of SOC and 2.84 Mg/ha for TN, it was 14. 06 Mg/ha of SOC and 1.40 Mg/ha for TN for Chillimo. When all forest fragment soil samples were bulked together, Jibat site had twice the value of SOC and TN than Chillimo. When disaggregated on the basis of each fragments, there existed differences in SOC (1.86 Mg/ha and 42.15 Mg/ha) and TN (0.24 Mg/ha and 4.23 Mg/ha) values. Among the forest fragments, fragment four ($F_4$) had the highest Relative Soil Improvement Index (RSII) value of 3826.82% and fragment fifteen ($F_{15}$) had the lowest RSII value (726.87%) which indicated that the former had a better quality of soil properties than the latter. Conclusion: SOC and TN differed across sampled fragments and sites. Variations in soil properties are the reflections of inherent soil parent material, aboveground vegetation, human interferences, and other physical factors. Such differences could be very important for identifying intervention measures for restoration and enhancing ecosystem services of those fragments.

Monitoring and Management of Contaminated Suspended Solid (오염 부유물질의 관측과 관리)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.932-937
    • /
    • 2011
  • Main objectives of this paper were; firstly, to explain impacts of suspended solid in the water body on the relationship between water quantity and water quality; secondly, study on the inter-relationship between organic materials, nutrients, pathogens, and suspended solids considering eco-friendly water resources. Relationship between water quality and water quantity is not easy to understand as it includes physicochemical-biological reactions and diffuse pollutions. Especially, suspended solid makes water resource management difficult. Eroded soil in the upper land transported to the downstream by water flows carrying biological and physicochemical information and sedimented in the downstream. As sediment scoured under high flow condition and environmental change, suspended solid and sediment should be emphasized for understanding the inter-relationship between water quality and water quantity. Knowledge gaps between known monitored data and management of suspended solid were identified as well for future study.

Estimating of the Greenhouse Gas Mitigation and Function of Water Resources Conservation through Conservation of Surface Soils Erosion and Policy Suggestion (표토유실 보전을 통한 온실가스배출 저감과 수자원 보전 기능의 산출 및 정책제안)

  • Oh, Seung-Min;Kim, Hyuck Soo;Lee, Sang-Pil;Lee, Jong Geon;Jeong, Seok Soon;Lim, Kyung Jae;Kim, Sung-Chul;Park, Youn Shik;Lee, Giha;Hwang, Sang-Il;Yang, Jae-E
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.74-84
    • /
    • 2017
  • Soil erosion is often extreme in Korea due to high rainfall intensities and steep slopes, and climate change has also increased the risk of erosion. Despite its significane, erosion-induced soil organic carbon (SOC) emission and water resource loss are not well understood, along with the lack of an integrated surface soil erosion protection policy. Therefore, to design adequate protection policies, land users, scientists, engineers and decision makers need proper information about surface soil and watershed properties related to greenhouse gas emission potential and water conservation capability, respectively. Assuming the total soil erosion of $346Tg\;yr^{-1}$, soil organic matter (SOM) content of 2% (58% of SOM is SOC), and mineralization rate of 20% of the displaced carbon, erosion-induced carbon emission could reach $800Gg\;C\;yr^{-1}$. Also the available water capacity of the soil was estimated to be 15.8 billion tons, which was 14 times higher than the yearly water supply demand in Seoul, Korea. Therefore, in order to prevent of soil erosion, this study proposes a three-stage plan for surface soil erosion prevention: 1) classification of soil erosion risk and scoring of surface soil quality, 2) selection of priority areas for conservation and best management practices (BMP), and 3) application of BMP and post management.

Competitive Adsorption and Subsequent Desorption of Sulfate in the Presence of Various Anions in Soils

  • Hong, Byeong-Deok;Lee, Kyo-seok;Lee, Dong-Sung;Rhie, Ja-Hyun;Bae, Hui-Su;Seo, IL-Hwan;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.541-547
    • /
    • 2016
  • In this experiment we investigated the influence of various anions including oxalic acid encountered as solution phase in soil on the adsorption and desorption of sulfate in Chungwon Bt soil. The effect of chloride and nitrate on the adsorption of sulfate was not significant, suggesting that sulfate was better able to compete for adsorption sites at concentrations studied, in contrast to the large reduction in the amount of chloride adsorbed in the presence of sulfate. The results of competition for sorption sites between sulfate and anion showed that the simultaneous presence of two anions in solution was effective in reduction of competing anion at a maximum value of adsorption, due to the similar adsorption mechanism for anion competition. Therefore, the variation in the buffer power of the acids will produce a change in the strength and amount of adsorption and the competitive ability.

Processing and Quality Control of Big Data from Korean SPAR (Soil-Plant-Atmosphere-Research) System (한국형 SPAR(Soil-Plant-Atmosphere-Research) 시스템에서 대용량 관측 자료의 처리 및 품질관리)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.340-345
    • /
    • 2020
  • In this study, we developed the quality control and assurance method of measurement data of SPAR (Soil-Plant-Atmosphere-Research) system, a climate change research facility, for the first time. It was found that the precise processing of CO2 flux data among many observations were sig nificantly important to increase the accuracy of canopy photosynthesis measurements in the SPAR system. The collected raw CO2 flux data should first be removed error and missing data and then replaced with estimated data according to photosynthetic lig ht response curve model. Comparing the correlation between cumulative net assimilation and soybean biomass, the quality control and assurance of the raw CO2 flux data showed an improved effect on canopy photosynthesis evaluation by increasing the coefficient of determination (R2) and lowering the root mean square error (RMSE). These data processing methods are expected to be usefully applied to the development of crop growth model using SPAR system.

Implementation of Complex Growth-environment Control System in Greenhouse (온실 복합생장환경 관제 시스템 구현)

  • Cho, Hyun Wook;Cho, Jong Sik;Park, In Gon;Seo, Beom Seok;Kim, Chan Woo;Shin, Chang Sun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, Wireless sensor network technology applied to various greenhouse agro-industry items such as horticulture and local specialty etc., we was constructed automatic control system for optimum growth environment by measuring growth status and environmental change. existing monitoring systems of greenhouse gather information about growth environment depends on the temperature. but in this system, Can be efficient collection and control of information to construct wireless sensor network by growth measurement sensor and environment monitoring sensor inside of the greenhouse. The system is consists of sensor manager for information processing, an environment database that stores information collected from sensors, the GUI of show the greenhouse status, it gather soil and environment information to soil and environment(including weather) sensors, growth measurement sensor. In addition to support that soil information service shows the temperature, moisture, EC, ph of soil to user through the interaction of obtained data and Complex Growth Environment information service for quality and productivity can prevention and response by growth disease or disaster of greenhouse agro-industry items how temperature, humidity, illumination acquiring informationin greenhouse(strawberry, ginseng). To verify the executability of the system, constructing the complex growth environment measurement system using wireless sensor network in greenhouse and we confirmed that it is can provide our optimized growth environment information.

Strategic environmental impact assessment proposal in consideration of the complex characteristics of the soil - Around the dam construction long-term plan - (토양의 복합적 특성을 고려한 전략환경영향평가 방안 - 댐건설 장기계획을 중심으로 -)

  • Kim, Tae Heum;Park, Sun Hwan;Hwang, Sang Il;Yang, Jihoon;Lee, Jai-Young;Hwang, Joung Bae
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 2016
  • Recently, soil has been recognized as a crucially important resource that even can change the quality of life. Also, recent studies have gradually mentioned the importance of assessing soil impact induced by development plans and projects. In this study, after detailed soil assessement items were selected from our national environmental policies and international agreements, they were tested for the long-term dam construction planning in order to ensure more suitable implementation of strategic environment assessment(SEA). We found that soil resources can be impacted by diverse factors such as soil erosion, soil organic matters, soil moving, soil biodiversity, and others. Such detailed factors are found to be overlapped with the pervious EIA factors. Accordingly, additional studies would be required for finding out more reasonable connection between assessment factors during any SEA progress.

Change of Aboveground Carbon Storage in a Pinus rigida Stand in Gwangnung, Gyunggi-do, Korea (경기도(京畿道) 광릉(光陵) 리기다소나무임분(林分)의 지상부(地上部) 탄소저장량(炭素貯藏量) 변화(變化))

  • Kim, Choonsig;Jeong, Jin-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.774-780
    • /
    • 2001
  • Aboveground carbon storage and increment of a 31-year-old pitch pine (Pinus rigida) stand were measured for five years (1997~2001) in the Jungbu Forest Experiment Station, Gyeonggi-do, Korea. The carbon concentration in each component of aboveground and soil depth decreased in the order of needle>branch>stembark>stemwood>forest floor>0-15cm soil depth>15-30cm soil depth. The carbon storage except for root carbon was 140,600kgC/ha and the tree accounted for 61%, soil 31% and forest floor 8% of the stand carbon storage. Due to high tree mortality by Fusarium subglutinans infection and spring drought in 2001, carbon increment except for 2001 data was 3,233kgC/ha/yr and was in the order of stemwood>branch>stembark>needle. Carbon storage and increment were attributed to stand density and site quality. Carbon storage and increment were higher in the high site quality than in the lower site quality plot on similar tree density. Also, the high tree density site on similar site quality showed more carbon storage and increment compared with the lower tree density. The results suggest that site quality and tree density are a key factor determining carbon storage and increment in this pitch pine stand.

  • PDF