• Title/Summary/Keyword: Change in soil quality

Search Result 240, Processing Time 0.03 seconds

Current Status and Future Prospect of Organic Farming in 25 European Countries with Special Reference to Increasing Number of Organic Farms and Financial Support Policy (유럽 25개국의 유기농업 현황과 전망 -유기농장의 재정보조 정책을 중심으로-)

  • 김종무
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.4
    • /
    • pp.1-27
    • /
    • 2001
  • The number of organic farms are increasing in European countries during last 10 years. Most European governments are giving subsidies for organic farmers as well as converting organic farms from conventional farming method. The price level of most organic products are higher than price level of conventional products in general. However, there are certainly some market demand problems in organic products in some countries. Organic farms will be increased in 2005 and 2010 for 10∼20% of the total agricultural area in some European countries. Government subsidy payment is also increasing. Therefore, many farmers are going to change into organic farming method from conventional farming. However, there will be certainly some market demand problems in future because of national economic growth problems. At the same time, the quality of soil can be improved and status of health of urban consumers should be improved by consuming organic products.

  • PDF

Effect of Removing P.E film-Mulch at Budding Stage of Tobacco on the Change of Moisture and Mineral Content in Plow Layer Soil and Nutrient Uptake. (생육중반기 피복제거가 작토층의 수분 및 무기성분 변화와 연초양분흡수에 미치는 영향)

  • 홍순달;이윤환;김재정;육창수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.8 no.1
    • /
    • pp.69-78
    • /
    • 1986
  • This experiment was carried out to Investigate the environmental changes of rhizosphere, behavior of nutrient components in soul, and nutrients uptake and growth response of the tobacco plant in the condition that mulch as polyethylene film, had been removed on the ridge at the 50th day after transplanting in comparison with continuous mulching condition. The results obtained were as follows; 1. After rainfall, soil moisture content In the plow layer was greatly increased without mulch in comparison with that of the plot with mulch. As a result, leaf water potential of tobacco plant without mulch was higher than that with mulch. 2. Available nutrients such as $NH_4-N, \;NO_3-N$, and total salts in the plow layer of the plot without mulch tended to be Increased, and especially accumulated on the surface layer owing to the redistribution of soil water by rainfall during the latter growth stage after removing mulch. 3. Nutrients uptake by tobacco was much more enhanced in the plot without mulch and resulted in higher contents of total nitrogen, $NO_3-N, \;P_2O_5, \;and K_5O$ in the tobacco leaf Especially higher content of nitrogen caused the delay of maturity resulting In the increased of dry weight of top part of tobacco in the plot without mulch toned to be Increased in comparison with that in mulching condition. Content of total nitrogen, $NO_3-N$, and nicotine in flue-lured leaves was much higher in the plot without. mulch than in mulching condition, but lower content of reducing sugar in the plot without mulch resulted in lower quality of tobacco.

  • PDF

Analysis of Spatial Variability in a Korean Paddy Field Using Median Polish Detrending (Median polish 기법을 이용한 한국 논의 공간변이 분석)

  • Chung, Sun-Ok;Jung, In-Kyu;Sung, Je-Hoon;Sudduth, Kenneth A.;Drummond, Scott T.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.362-369
    • /
    • 2008
  • There is developing interest in precision agriculture in Korea, despite the fact that typical Korean fields are less than 1 ha in size. Describing within-field variability in typical Korean production settings is a fundamental first step toward determining the size of management zones and the inter-relationships between limiting factors, for establishment of site-specific management strategies. Measurements of rice (Oriza Sativa L) yield, chlorophyll content, and soil properties were obtained in a small (100-m by 30-m) Korean rice paddy field. Yield data were manually collected on 10-m by 5-m grids (180 samples with 3 samples in each of 60 grid cells) and chlorophyll content was measured using a Minolta SPAD 502 in 2-m by 2-m grids. Soil samples were collected at 275 points to compare results from sampling at different scales. Ten soil properties important for rice production in Korea were determined through laboratory analyses. Variogram analysis and point kriging with and without median polishing were conducted to determine the variability of the measured parameters. Influence of variogram model selection and other parameters on the interpretation of the data was investigated. For many of the data, maximum values were greater than double the minimum values, indicating considerable spatial variability in the small paddy field, and large-scale spatial trends were present. When variograms were fit to the original data, the limits of spatial dependency for rice yield and SP AD reading were 11.5 m and 6.5 m, respectively, and after detrending the limits were reduced to 7.4 m and 3.9 m. The range of spatial dependency for soil properties was variable, with several having ranges as short as 2 m and others having ranges greater than 30 m. Kriged maps of the variables clearly showed the presence of both large-scale (trend) variability and small-scale variability in this small field where it would be reasonable to expect uniformity. These findings indicate the potential for applying the principles and technology of precision agriculture for Korean paddy fields. Additional research is needed to confirm the results with data from other fields and crops.d similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

Effect of Water Table Depth in Different Soil Texture on Quality of Barley and Wheat Grain (토성별 지하수위가 밀, 보리의 품질에 미치는 영향)

  • 이홍석;구자환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.278-284
    • /
    • 1995
  • This experiment was performed to characterize the optimum water table level for the grain quality, seed germination and diastic power of barley(var. Olbori) and wheat(var. Grumil). Olbori and Grumil grew in the 550 liter plastic pot that filled with silt loam or sandy loam. During the whole growth period, the underground water level adjusted to be 20, 30, 40, 50 and 70cm. Filled grain ratio and specific gravity were not affected by soil texture and water table. Low level of water table caused the increase of 1,000 grain weight in wheat and barley, but soil texture didn't. Crude protein content tended to be high as the water table level was high, especially in wheat. Change in crude protein content was affected by underground water level more than soil texture. And the affection was slightly higher in sandy loam than silt loam, but the difference was small. The higher level of water table led to the lower crude lipid content in barley and wheat grain. Crude lipid content of both wheat and barley grain grown in sandy loam was higher than those grown in silt loam. As the water table level down, the ash content of barley and wheat grain tend to increase, especially in sandy loam. Wheat flour yield was not affected by soil texture. It was about 65% at 20cm of water level and above 67% at 40cm water level. The seed germination of wheat and barley was more than 95% when the seeds were placed at 2$0^{\circ}C$ for three days. Regardless of soil texture, the lowest germination was seen at 20cm of water table level. And the seed germination rate increased as the underground water level became low. Above 89% of barley grains were germinated within 48 hours except 20cm level of water table in sandy loam. Diastic power of germinated barley was the lowest at 20cm of water table level, and it was almost unchanged below 30cm of water table level. And also it was not affected by soil texture.

  • PDF

Comparison of Chemical Compositions of Size-segregated Atmospheric Aerosols between Asian Dust and Non-Asian Dust Periods at Background Area of Korea

  • Kim, Won-Hyung;Song, Jung-Min;Ko, Hee-Jung;Kim, Jin Seog;Lee, Joung Hae;Kang, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3651-3656
    • /
    • 2012
  • The size-segregated atmospheric aerosols have been collected at 1100 m site of Mt. Halla in Jeju, a background area in Korea, using 8-stage cascade impact air sampler during Asian dust and non-Asian dust storm periods. Their ionic and elemental species were analyzed, in order to examine the pollution characteristics and composition change between Asian dust and non-Asian dust periods. The major ionic species such as nss-$SO_4{^{2-}}$, $NH_4{^+}$, and $K^+$ were predominantly distributed in the fine particles (below $2.1{\mu}m$ diameter), and besides the $NO_3{^-}$ was distributed more in coarse particle fraction than fine particle. On the other hand, the typical soil and marine species i.e., nss-$Ca^{2+}$, $Na^+$, $Cl^-$, and $Mg^{2+}$, were mostly existed in the coarse particles (over $2.1{\mu}m$ diameter). As well in the elemental analysis of aerosols, the major soil-originated Al, Fe, Ca, and others showed prominently high concentrations in the coarse particle fraction, whereas the anthropogenic S and Pb were relatively high in the fine particle fraction. From the comparison of aerosol compositions between Asian dust and non-Asian dust periods, the concentrations of the soil-originated species such as nss-$Ca^{2+}$, Al, Ca, Fe, Ti, Mn, Ba, Sr have increased as 2.7-4.2 times during the Asian dust periods. Meanwhile the concentrations of nss-$SO_4{^{2-}}$ and $NO_3{^-}$ have increased as 1.4 and 2.0 times, and on the contrary $NH_4{^+}$ concentrations have a little bit decreased during the Asian dust periods. Especially the concentrations of both soil-originated ionic and elemental species increased noticeably in the coarse particle mode during the dust storm periods.

Effects of Co-digestate application on the Soil Properties, Leachate and Growth Responses of Paddy Rice (통합혐기소화액의 시용이 벼 생육 및 논토양 환경에 미치는 영향)

  • Hong, Seung-Gil;Shin, Joung-Du;Kwon, Soon-Ik;Park, Woo-Kyun;Lee, Deog-Bae;Kim, Jeong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Livestock manures have a potential to be a valuable resource with an efficient treatment. In Korea, 42 million tons of livestock manure were generated in 2008, and 84 % of them were used for compost and liquid fertilizer production. Recently recycling of livestock manure for biogas production through anaerobic digestion is increasing, but its utilization in agriculture is still uncertified. In this study, there was applied co-digestate to the paddy for rice cultivation based on N supplement. Co-digestate was fertilizer fermented with pig slurry and food waste combined with the ratio of 70:30(v:v) in its volumetric basis. For assessing the safety of co-digestate, it was monitored the contents of co-digestate for seasonal variation, resulted in no potential harm to the soil and plant by heavy metals. The results showed that soil applied with co-digestate was increased in exchangeable potassium, copper and zinc mainly due to the high rate of pig slurry in co-digestate applied. Considering high salt content due to the combination with food waste, strict quality assurances are needed for safe application to arable land though it has valuable fertilizer nutrient. Leachate after treatment showed that the concentration of nitrate nitrogen washed out within two weeks. Considering the salt accumulation results in soil, it is highly recommended that the application rate of co-digestate should not exceed the crop fertilization rate based on N supplement. With these results, it was concluded that co-digestate could be used as an alternative fertilizer for chemical fertilizer. More study is needed for the long-term effects of co-digestate application on the soil and water environment.

Development of Field Scale Model for Estimating Garlic Growth Based on UAV NDVI and Meteorological Factors

  • Na, Sang-Il;Min, Byoung-keol;Park, Chan-Won;So, Kyu-Ho;Park, Jae-Moon;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.422-433
    • /
    • 2017
  • Unmanned Aerial Vehicle (UAV) has several advantages over conventional remote sensing techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude, they can obtain good quality images even in cloudy weather. In this paper, we developed for estimating garlic growth at field scale model in major cultivation regions. We used the $NDVI_{UAV}$ that reflects the crop conditions, and seven meteorological elements for 3 major cultivation regions from 2015 to 2017. For this study, UAV imagery was taken at Taean, Changnyeong, and Hapcheon regions nine times from early February to late June during the garlic growing season. Four plant growth parameters, plant height (P.H.), leaf number (L.N.), plant diameter (P.D.), and fresh weight (F.W.) were measured for twenty plants per plot for each field campaign. The multiple linear regression models were suggested by using backward elimination and stepwise selection in the extraction of independent variables. As a result, model of cold type explain 82.1%, 65.9%, 64.5%, and 61.7% of the P.H., F.W., L.N., P.D. with a root mean square error (RMSE) of 7.98 cm, 5.91 g, 1.05, and 3.43 cm. Especially, model of warm type explain 92.9%, 88.6%, 62.8%, 54.6% of the P.H., P.D., L.N., F.W. with a root mean square error (RMSE) of 16.41 cm, 9.08 cm, 1.12, 19.51 g. The spatial distribution map of garlic growth was in strong agreement with the field measurements in terms of field variation and relative numerical values when $NDVI_{UAV}$ was applied to multiple linear regression models. These results will also be useful for determining the UAV multi-spectral imagery necessary to estimate growth parameters of garlic.

Assessment of Future Climate Change Impact on Groundwater recharge, Baseflow and Sediment in Steep Sloping Watershed (미래 기후변화에 따른 급경사지 유역에서의 지하수 함양, 기저유출 및 토양유실 평가)

  • Lee, Ji Min;Jung, Younghun;Park, Younshik;Kang, Hyunwoo;Lim, Kyoung Jae;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Climate change has caused detrimental phenomena such as heavy rainfall which could aggravate soil erosion. Accordingly, it is needed to evaluate the groundwater recharge, baseflow, and soil erosion for the efficient management of water resources and quality. In this study, future climate change scenarios were applied to the H aean-myeon watershed which is a steep sloping watershed in South Korea to analyze groundwater recharge, baseflow, sediment. Also, the variation of groundwater recharge, baseflow, sediment was analyzed according to the change of slope (5 %). Simulated periods were divided into three terms (2013 ~ 2040 years, 2041 ~ 2070 years, 2071 ~ 2100 years). As a result of this study, average groundwater recharge and baseflow increased by 50 %, 42 %, and sediment decreased by 72 %, respectively. In these regards, the suggested method will positively contribute to hydro-ecosystem and reduction of muddy water at a steep sloping watershed.

Properties of Organically Practiced Paddy Soils (유기농 실천 논토양의 이화학적 특성)

  • Hong, Seung-Gil;Park, Kwang-Lai;Kim, Jinho;Ahn, Minsil;Lee, Chorong;Kim, Min-Gi;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.69-76
    • /
    • 2016
  • To produce the primary data for best management of soil nutrient in organically practiced soils, 75 leading organic farms whose paddy fields were certified as organic were selected. Soil samples were collected from the paddy fields before plowing, and then analyzed for the determination of physico-chemical properties. Soil pH, organic matter and available phosphate were analyzed and averaged 6.2, $25.6mg\;kg^{-1}$ and $88.4mg\;kg^{-1}$, respectively. Contrary to the national-scale-surveyed paddy soils including organic and conventional farming, pH was higher, available phosphate was lower in the organically practiced soils, but organic matter was similar. With the increasing cultivation period in organic, soil pH and porosity were also increased, EC, available phosphate, bulk density and soil hardness were lower than those from the national survey. Organic matter, however, was not significantly changed. The bulk density was negatively correlated with the organic matter content for both surface topsoil ($R^2=-0.5424$) and subsoil ($R^2=-0.6429$) (p<0.05). Soil quality is improved in most of soil chemical and physical composition factors excluding organic matter and available phosphate. However, it is necessary to establish the counter measure plan for organic matter management and to develop phosphate-containing materials which can be used as organic agricultural material in the future.

Environmental Changes after Timber Harvesting in (Mt.) Paekunsan (백운산(白雲山) 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收穫地)에서 벌출직후(伐出直後)의 환경변화(環境變化))

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.465-478
    • /
    • 1995
  • The objective of this study was to investigate the impacts of large-scale timber harvesting on the environment of a mature hardwood forest. To achieve the objective, the effects of harvesting on forest environmental factors were analyzed quantitatively using the field data measured in the study sites of Seoul National University Research Forests [(Mt.) Paekunsan] for two years(1993-1994) following timber harvesting. The field data include information on vegetation, soil mesofauna, physicochemical characteristics of soil, surface water runoff, water quality in the stream, and hillslope erosion. For comparison, field data for each environmental factor were collected in forest areas disturbed by logging and undisturbed, separately. The results of this study were as follows : The diversity of vegetational species increased in the harvested sites. However, the similarity index value of species between harvested and non-harvested sites was close to each other. Soil bulk density and soil hardness were increased after timber harvesting, respectively. The level of organic matter, total-N, avail $P_2O_5$, CEC($K^+$, $Na^+$, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$) in the harvested area were found decreased. While the population of Colembola spp., and Acari spp. among soil mesofauna in harvested sites increased by two to seven times compared to those of non-harvested sites during the first year, the rates of increment decreased in the second year. However, those members of soil mesofauna in harvested sites were still higher than those of non-harvested sites in the second year. The results of statistical analysis using the stepwise regression method indicated that the diversity of soil mesofauna were significantly affected by soil moisture, soil bulk density, $Mg^{{+}{+}}$, CEC, and soil temperature at soil depth of 5(0~10)cm in the order of importance. The amount of surface water runoff on harvested sites was larger than that of non-harvested sites by 28% in the first year and 24.5% in the second year after timber harvesting. The level of BOD, COD, and pH in the stream water on the harvested sites reached at the level of the domestic use for drinking in the first and second year after timber harvesting. Such heavy metals as Cd, Pb, Cu, and organic P were not found. Moreover, the level of eight factors of domestic use for drinking water designated by the Ministry of Health and Welfare of Korea were within the level of the first class in the quality of drinking water standard. The study also showed that the amount of hillslope erosion in harvested sites was 4.77 ton/ha/yr in the first year after timber harvesting. In the second year, the amount decreased rapidly to 1.0 ton/ha/yr. The impact of logging on hillslope erosion in the harvested sites was larger than that in non-harvested sites by seven times in the first year and two times in the second year. The above results indicate that the large-scale timber harvesting cause significant changes in the environmental factors. However, the results are based on only two-year field observation. We should take more field observation and analyses to increase understandings on the impacts of timber harvesting on environmental changes. With the understandings, we might be able to improve the technology of timber harvesting operations to reduce the environmental impacts of large-scale timber harvesting.

  • PDF