DOI QR코드

DOI QR Code

유기농 실천 논토양의 이화학적 특성

Properties of Organically Practiced Paddy Soils

  • 홍승길 (국립농업과학원 농업환경부 유기농업과) ;
  • 박광래 (국립농업과학원 농업환경부 유기농업과) ;
  • 김진호 (전라북도농업기술원 기후변화대응과) ;
  • 안민실 (국립농업과학원 농업환경부 유기농업과) ;
  • 이초롱 (국립농업과학원 농업환경부 유기농업과) ;
  • 김민기 (국립농업과학원 농업환경부 유기농업과) ;
  • 김석철 (국립농업과학원 농업환경부 유기농업과)
  • Hong, Seung-Gil (Organic Agricultural Division, National Institute of Agricultural Sciences, RDA) ;
  • Park, Kwang-Lai (Organic Agricultural Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jinho (Climate Change Division, Jeollabukdo) ;
  • Ahn, Minsil (Organic Agricultural Division, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Chorong (Organic Agricultural Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Min-Gi (Organic Agricultural Division, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Seok-Cheol (Organic Agricultural Division, National Institute of Agricultural Sciences, RDA)
  • 투고 : 2016.11.21
  • 심사 : 2016.12.06
  • 발행 : 2016.12.30

초록

최적의 유기농경지 토양 관리 기준 및 양분 관리 방안을 제시하기 위한 기초자료를 만들기 위해 유기농 인증을 받은 국내 75개 선도 농가를 선정하고, 논 토양에서 이앙 전에 토양 시료를 채취하여 이화학적 특성을 분석하였다. 유기농 토양은 평균적으로 pH 6.2, 유기물 $25.6mg\;kg^{-1}$, 유효 인산 $88.4mg\;kg^{-1}$이나 편차가 크게 나타났으며, 유기농과 관행농을 포함한 전국 규모 토양조사 결과에 비해 pH는 높게 나타났고, 유효 인산은 낮게 나타났으며 유기물은 비슷한 수준을 보였다. 한편 재배년수에 따라 토양 pH와 공극률은 높아지고 있었으며, EC와 유효인산, 용적밀도, 토양 경도는 낮아지고 있었으며, 유기물은 차이를 보이지 않았다. 용적밀도는 표토($R^2=-0.5424$)와 심토($R^2=-0.6429$) 모두 유기물과 부의 상관관계를 나타냈다(p<0.05). 조사 결과 유기물과 유효 인산을 제외한 대부분의 토양 이화학성 인자들에서 토양의 질이 향상되고 있어, 향후 유기물 관리 대책 수립과 유기농업자재로 사용가능한 인산 자재의 발굴이나 개발이 필요한 것으로 사료되었다.

To produce the primary data for best management of soil nutrient in organically practiced soils, 75 leading organic farms whose paddy fields were certified as organic were selected. Soil samples were collected from the paddy fields before plowing, and then analyzed for the determination of physico-chemical properties. Soil pH, organic matter and available phosphate were analyzed and averaged 6.2, $25.6mg\;kg^{-1}$ and $88.4mg\;kg^{-1}$, respectively. Contrary to the national-scale-surveyed paddy soils including organic and conventional farming, pH was higher, available phosphate was lower in the organically practiced soils, but organic matter was similar. With the increasing cultivation period in organic, soil pH and porosity were also increased, EC, available phosphate, bulk density and soil hardness were lower than those from the national survey. Organic matter, however, was not significantly changed. The bulk density was negatively correlated with the organic matter content for both surface topsoil ($R^2=-0.5424$) and subsoil ($R^2=-0.6429$) (p<0.05). Soil quality is improved in most of soil chemical and physical composition factors excluding organic matter and available phosphate. However, it is necessary to establish the counter measure plan for organic matter management and to develop phosphate-containing materials which can be used as organic agricultural material in the future.

키워드

참고문헌

  1. Lee, Y.H., Lee, S.G., Kim, S.H., Shin, J.H., Choi, D.H., Lee, Y.J. and Kim, H.M., "Investigation of the utilization of organic materials and the chemical properties of soil in the organic farms in Korea", Korean Journal of Organic Agriculture, 14(1), pp. 55-67. (2006).
  2. Poudel, D.D., Horwarth, W.R., Lanini, W.T., Temple, S.R. and van Bruggen, A.H.C., "Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional in northern Californi". Agric. Ecosys. Environ., 90, pp. 125-137. (2002). https://doi.org/10.1016/S0167-8809(01)00196-7
  3. Fliessbach, A., Oberholzer, H.-R., Gunst, L., and M der, P., "Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming", Agriculture, Ecosystems and Environment, 118, pp. 273-284. (2007). https://doi.org/10.1016/j.agee.2006.05.022
  4. Mazzoncini, M., Canali, S., Giovannetti, M., Castagnoli, M., Tittarelli, F., Antichi, D., Nannelli, R., Cristani, C. and B rberi, P., "Comparison of organic and conventional stockless arable systems: A multidisciplinary approach to soil quality evaluation", Applied Soil Ecology, 44(2), pp. 124-132. (2010). https://doi.org/10.1016/j.apsoil.2009.11.001
  5. Sacco, D., Moretti, B., Monaco, S. and Grignani, C., "Six-year transition from conventional to organic farming: effects on crop production and soil quality", European Journal of Agronomy, 69, pp. 10-20. (2015). https://doi.org/10.1016/j.eja.2015.05.002
  6. Glover, J.D., Reganol, J.P. and Andrews, P.K., "Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State", Agric. Ecosys. Environ. 80, pp. 29-45. (2000). https://doi.org/10.1016/S0167-8809(00)00131-6
  7. Cho, H.J., Hwang, S.W., Han, K.H., Cho, H.R., Shin, J.H. and Kim, L.Y., , "Physicochemical properties of upland soils under organic farming", Soil Sci. Fert. 42, pp. 98-102. (2009).
  8. Chung, J.B., and Lee, Y.J., "Comparison of soil nutrient status in conventional and organic apple farm", Korean Journal of Soil Science and Fertilizer, 41(1), pp. 26-33. (2008).
  9. Choi, H.S., Li, X., Kim, W.S., Lee, Y. and Jee, H.J., "Comparison of soil physicochemical and microbial characteristics in soil of 'iitaka'pear orchards between organic and conventional cultivations", Kor. J. of Organic Agri., 19, pp. 229-243. (2011).
  10. Kim, P.J., Lee, S.M., Yoon, H.B., Park, Y.H., Lee, J.Y. and Kim, S.C., "Characteristics of phosphorus accumulation in organic farming fields", Korean Journal of Soil Science and Fertilizer, 33(4), pp. 234-241. (2000).
  11. NAAS, "Soil chemical analysis methods", National Institute of Agricultural Sciences. (2010)
  12. Kim, Y.Y., Ko, K.D, , Kim, K.I. and Shin, K.C. "Soil Management in Vegetable Cultivation", The Book Garden Publishing. (2015).
  13. Herencia, J.F., Garcia-Galavis, P.A., and Maqueda, C., "Long-Term Effect of Organic and Mineral Fertilization on Soil Physical Properties Under Greenhouse and Outdoor Management Practices", Pedosphere, 21(4), pp. 443-453. (2011). https://doi.org/10.1016/S1002-0160(11)60146-X
  14. Kang, S.S., Roh1, A.S., Choi, S.C., Kim, Y.S., Kim, H.J., Choi, M.T., Ahn, B.K., Kim, H.W., Kim, H.K., Park, J.H., Lee, Y.H., Yang, S.H., Ryu, J.S., Jang, Y.S., Kim, M.S., Sonn, Y.K., Lee, C.H., Ha, S.G., Lee, D.B., and Kim, Y.H., "Status and Changes in Chemical Properties of Paddy Soil in Korea", Korean Journal of Soil Science and Fertilizer, 45(6), pp. 968-972. (2012). https://doi.org/10.7745/KJSSF.2012.45.6.968
  15. Ayers, R.S., and Westcot, D.W., "Water quality for agriculture", FAO Irrigation and Drainage Paper. (1985).
  16. Clark, M.S., Horwath, W.R., Shannan, C., and Scow, K.M., "Changes in soil chemical properties resulting from organic and low-input farming practices", Agron. J., 90, pp. 662-671. (1998). https://doi.org/10.2134/agronj1998.00021962009000050016x
  17. kemura, Y., Shukla, M.K., Tahboub, M. and Leinauer, B., "Some Physical and Chemical Properties of Soil in Organic and Conventional Farms for a Semi-Arid Ecosystem of New Mexico", Journal of Sustainable Agriculture, 31, pp. 149-170. (2008). https://doi.org/10.1300/J064v31n04_10
  18. RDA, "Soil Management Technology", Guidebook for Agricultural Technology-78, 2nd Edition. Rural Development Administration, pp.145. (2015).
  19. RDA. "Monitoring Project on Agri-Environmental Quality in Korea", Final Report. In Progress, Rural Development Administration. (2016).