• Title/Summary/Keyword: Change Visualization

Search Result 302, Processing Time 0.02 seconds

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet (혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화)

  • Song, Juyeon;Song, Wooseok;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.711-716
    • /
    • 2020
  • Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.

Unsteady Aerodynamic Characteristics depending on Reduced Frequency for a Pitching NACA0012 Airfoil at Rec=2.3×104

  • Kim, Dong-Ha;Chang, Jo-Won;Sohn, Myong Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • Most of small air vehicles with moving wing fly at low Reynolds number condition and the reduced frequency of the moving wing ranges from 0.0 to 1.0. The physical phenomena over the wing dramatically vary with the reduced frequency. This study examines experimentally the effect of the reduced frequency at low Reynolds number. The NACA0012 airfoil performs sinusoidal pitching motion with respect to the quarter chord with the four reduced frequencies of 0.1, 0.2, 0.4 and 0.76 at the Reynolds number $2.3{\times}10^4$. Smoke-wire flow visualization, unsteady surface pressure measurement, and unsteady force calculation are conducted. At the reduced frequency of 0.1 and 0.2, various boundary layer events such as reverse flow, discrete vortices, separation and reattachment change the amplitude and the rotation direction of the unsteady force hysteresis. However, the boundary layer events abruptly disappear at the reduced frequency of 0.4 and 0.76. Especially at the reduced frequency of 0.76, the local variation of the unsteady force with respect to the angle of attack completely vanishes. These results lead us to the conclusion that the unsteady aerodynamic characteristics of the reduced frequency of 0.2 and 0.4 are clearly distinguishable and the unsteady aerodynamic characteristics below the reduced frequency of 0.2 are governed by the boundary layer events.

Study on Combustion Performance and Burning Velocity in a Micro Combustor (초소형 연소기에서 연소성능과 연소속도에 대한 연구)

  • Na Hanbee;Lee Dae Hoon;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.662-670
    • /
    • 2005
  • The effect of heat loss on combustion performance and burning velocity of micro combustors in various conditions were exploited experimentally. Three different gases were used, and various geometric matrixes were considered to figure out the phenomena of combustion in a micro combustor. The micro combustors used in this study were constant volume combustors and had cylindrical shape. Geometric parameter of combustor was defined as combustor height and diameter. The effect of height was exploited parametrically as 1mm, 2mm and 3 mm and the effect of diameter was parameterized to be 7.5 mm and 15 mm. Three different combustibles which were Stoichiometric mixtures of methane and air, hydrogen and air, and mixture of hydrogen and air with fuel stoichiometry of two were used. By pressure measurement and visualization of flame propagation, characteristic of flame propagation was obtained. Flame propagations which were synchronized with pressure change within combustor were analyzed. From the analysis of images obtained during the flame propagations, burning velocity at each location of flame was obtained. About $7\%$ decrease in burning velocity of $CH_4/Air$ stoichiometric mixture compared with previous a empirical result was observed, and we can conclude that it is acceptable to use empirical equations for laminar premixed flame burning velocity to micro combustions. Results presented in this paper will give fine tool for analysis and prediction of combustion process within micro combustors.

A Visual Investigation of Coherent Structure Behaviour Under Tone-Excited Laminar Non-Premixed Jet Flame (음향 가진된 층류 비예혼합 분류 화염에서 거대 와류 거동에 관한 가시화 연구)

  • Lee, Kee-Man;Oh, Sai-Kee;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.275-285
    • /
    • 2003
  • A visualization study on the effect of forcing amplitude in tone-excited jet diffusion flames has been conducted. Visualization techniques are employed using optical schemes. which are a light scattering photography. Flame stability curve is attained according to Reynolds number and forcing amplitude at a fuel tube resonant frequency. Flame behavior is globally grouped into two from attached flame to blown-out flame according to forcing amplitude: one sticks the tradition flame behavior which has been observed in general jet diffusion flames and the other shows a variety of flame modes such as the flame of a feeble forcing amplitude where traditionally well-organized vortex motion evolves, a fat flame. an elongated flame. and an in-burning flame. Particular attention is focused on an elongation flame. which is associated with a turnabout phenomenon of vortex motion and on a reversal of the direction of vortex roll-up. It is found that the flame length with forcing amplitude is the direct outcome of the evolution process of the formed inner flow structure. Especially the negative part of the acoustic cycle under the influence of a strong negative pressure gradient causes the shapes of the fuel stem and fuel branch part and even the direction of vortex roll-up to dramatically change.

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.

Flow Characteristics around Underwater Triangular Structure with Different Inclination (경사도가 다른 수중 삼각형상구조물 주위의 유동특성)

  • Choe, Sang-Bom;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.241-246
    • /
    • 2014
  • The purpose of this study is to investigate the flow characteristics around underwater triangular structure with various inclination and Reynolds number. A flow fields around the triangular structure model were measured by visualization method and PIV in the circulating water channel. The result of the experiment is where the triangular structure that has a inclination of $45^{\circ}$ and the reynolds number at $Re=2.9{\times}10^3$ showed rising velocity component to 2.7 times of the structure height. When the reynolds number is steady and when the inclination is greater the descending velocity component of the structure's rears current form is greatly shown and for the areas where it's more than y/hs=1.75 has a change in the angle of inclination but it doesn't give a great effect to it.

Visualization using Emotion Information in Movie Script (영화 스크립트 내 감정 정보를 이용한 시각화)

  • Kim, Jinsu
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.69-74
    • /
    • 2018
  • Through the convergence of Internet technology and various information technologies, it is possible to collect and process vast amount of information and to exchange various knowledge according to user's personal preference. Especially, there is a tendency to prefer intimate contents connected with the user's preference through the flow of emotional changes contained in the movie media. Based on the information presented in the script, the user seeks to visualize the flow of the entire emotion, the flow of emotions in a specific scene, or a specific scene in order to understand it more quickly. In this paper, after obtaining the raw data from the movie web page, it transforms it into a standardized scenario format after refining process. After converting the refined data into an XML document to easily obtain various information, various sentences are predicted by inputting each paragraph into the emotion prediction system. We propose a system that can easily understand the change of the emotional state between the characters in the whole or a specific part of the various emotions required by the user by mixing the predicted emotions flow and the amount of information included in the script.

Implementation of Flight Simulator using 6DOF Motion Platform

  • Park, Myeong-Chul;Choi, Duk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.17-23
    • /
    • 2018
  • In this paper, we implemented a flight posture simulator that intuitively understands aircraft flight posture and visualizes the principle of motion. The proposed system operates the 6 - axis motion platform according to the change of the navigation information and transmits the flight attitude to the simulator using the gyro sensor. A gyro sensor and an acceleration sensor are used together to analyze the attitude of the aircraft. The reason is that the gyro sensor has a cumulative error in the integration process. And the accelerometer sensor was compensated by using the complementary filter because noise was serious due to short term vibration. Using the compensated sensor information, the motion platform is operated by calculating the angle to be transmitted to the 6-axis motor. And visualization result is implemented using OpenGL. The results of this study can be used as teaching materials for students related to aviation in the future.

An Experimental Investigation on the Pressure Behavior Accompanying the Explosion of Tin in Water (주석-물 시스템의 증기폭발시 발생하는 압력거동에 대한 실험적 연구)

  • Shin, Y.S.;Song, J.H.;Kim, J.H.;Park, I.K.;Hong, S.W.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.51-56
    • /
    • 2001
  • Vapor explosion is one of the most important problems encountered in severe accident management of nuclear power plants. In spite of many efforts, a lot of questions still remain for the fundamental understanding of vapor explosion phenomena. Therefore, KAERI launched a real material experiment called TROI using 20 kg of UO2 and ZrO2 to investigate the vapor explosion phenomena. In addition, a small-scale experiment with molten-tin/water system was performed to quantify the characteristics of vapor explosion and to understand the phenomenology of vapor explosion. A number of instruments were used to measure the physical change occurring during the vapor explosion. In this experiment, the vapor explosion generated by molten fuel water interaction is visualized using high speed camera and the pressure behavior accompanying the explosion is investigated.

  • PDF