• Title/Summary/Keyword: Change Visualization

Search Result 302, Processing Time 0.02 seconds

Investigating the Global Financial Markets from a Social Network Analysis Perspective (소셜네트워크분석 접근법을 활용한 글로벌 금융시장 네트워크 분석)

  • Kim, Dae-Sik;Kwahk, Kee-Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.4
    • /
    • pp.11-33
    • /
    • 2013
  • We analyzed the structures and properties of the global financial market networks using social network analysis approach. The Minimum Spanning Tree (MST) lengths and networks of the global financial markets based on the correlation coefficients have been analyzed. Firstly, similar to the previous studies on the global stock indices using MST length, the diversification effects in the global multi-asset portfolio can disappear during the crisis as the correlations among the asset class and within the asset class increase due to the system risks. Second, through the network visualization, we found the clustering of the asset class in the global financial markets network, which confirms the possible diversification effect in the global multi-asset portfolio. Meanwhile, we found the changes in the structure of the network during the crisis. For the last one, in terms of the degree centrality, the stock indices were the most influential to other assets in the global financial markets network, while in terms of the betweenness centrality, Gold, Silver and AUD. In the practical perspective, we propose the methods such as MST length and network visualization to monitor the change of the correlation risk for the risk management of the multi-asset portfolio.

Variations of imaging depth and chloroplast emission spectrum of Arabidopsis thaliana with excitation wavelength in two-photon microscopy (이광자현미경 여기 광 파장에 따른 Arabidopsis thaliana 촬영 깊이 및 엽록체 형광 스펙트럼의 변화)

  • Joo, Yongjoon;Son, Si Hyung;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Two-photon microscopy (TPM) has been used in plant research as a high-resolution high-depth 3D imaging modality. However, TPM is known to induce photo-damage to the plant in case of long time exposure, and optimal excitation wavelength for plant imaging has not been investigated. Longer excitation wavelength may be appropriate for in vivo two-photon imaging of Arabidopsis thaliana leaves, and effects of longer excitation wavelength were investigated in terms of imaging depth, emission spectrum. Changes of emission spectrum as a function of exposure time at longer excitation wavelength were measured for in vivo longitudinal imaging. Imaging depth was not changed much probably because photon scattering at the cell wall was a limiting factor. Chloroplast emission spectrum showed its intensity peak shift by 20 nm with transition of excitation wavelength from 849 nm or below to 850 nm or higher. Emission spectrum showed different change patterns with excitation wavelengths in longitudinal imaging. Longer excitation wavelengths appeared to interact with chloroplasts differently in comparison with 780 nm excitation wavelength, and may be good for in vivo imaging.

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.

Building a Code Visualization Process to Extract Bad Smell Codes (배드 스멜 코드 추출을 위한 코드 가시화 프로세스 구축)

  • Park, Jihoon;Park, Bo Kyung;Kim, Ki Du;Kim, R. Young Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.465-472
    • /
    • 2019
  • Today, in many area the rise of software necessity there has been increasing the issue of the impotance of Good Software. Our reality in software industrial world has been happening to frequently change requirements at any stage of software life cycle. Furthermore this frequent changing will be increasing the design complexity, which will result in being the lower quality of software against our purpose the original design goals. To solve this problem, we suggest how to improve software design through refactoring based on reverse engineering. This is our way of diverse approaches to visually identify bad smell patterns in source code. We expect to improve software quality through refactoring on even frequently changing requirements.

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

Fusion technology in applied geophysics

  • Matsuoka Toshifumi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.21-26
    • /
    • 2003
  • The visualization of three dimensional geophysical data is forcing a revolution in the way of working, and allowing the discovery and production of hydrocarbons at much lower costs than previously thought possible. There are many aspects of this revolution that are behind the scenes, such as the database structure, the storage and retrieval of data, and the exchange of data among programs. Also the user had changes where the interpreter (or manager, or processor) actually looks at and somehow interacts with the data. The use of opacity in volume rendering, and how its judicious application can assist in imaging geologic features in three dimensional seismic data. This revolutionary development of new technology is based on the philosophy of synergy of inter-disciplines of the oil industry. Group interaction fostered by large room visualization environments enables the integration of disciplines we strive for, by putting the petrophysicist, geologist, geophysicist, and reservoir engineer in one place, looking at one image together, without jargon or geography separating them. All these tools developed in the oil industry can be applied into the civil engineering industry also such as the prior geological and geophysical survey of the constructions. Many examples will show how three dimensional geophysical technology might make a revolution in the oil business industry now and in future. This change can be considered as a fusion process at data, information, and knowledge levels.

  • PDF

Acoustic characteristics of Anchovy schools, and visualization of their connection with water temperature and salinity in the Southwestern Sea and the Westsouthern Sea of South Korea (서해 남부와 남해 서부의 한 정점에서 수온 및 염분과 멸치 어군의 특징의 관련성 시각화)

  • Kang, Myounghee;Choi, Seok-Gwan;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.1
    • /
    • pp.39-49
    • /
    • 2014
  • Morphological and positional characteristics of anchovy aggregations, confirmed by trawling, were examined in two locations of the southern part of theWest Sea (T1) and the western side of South Sea (T11) of South Korea. Morphological characteristics (mean length, height and area) of the anchovy aggregations at T1 were smaller than those at T11, however the positional characteristics (distributional depth and bottom depth) of the aggregations at T1 were larger than those at T11. Diverse dataset such as the ship's cruise track, the cruse map, and interpolated three-dimensional-like water temperature were visualized in multiple dimensions. For a comprehensive understanding of the anchovy aggregations within their surrounding circumstances, the interpolated water temperature transferred to the location of anchovy aggregations at both stations were visualized based on geospatial information. Using quantitative investigation, the overall range of change in water temperature and salinity of anchovy aggregations at stations was considerably small. However, the water temperature and salinity of anchovy aggregations at T11 were somewhat higher than those at T1.

Measurement of Dynamic Contact Angle of Droplet on Moving Hydrophobic and Hydrophilic Surfaces (이동하는 소수성 및 친수성 표면에서 액적의 동접촉각 측정)

  • Song, Jungyu;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • This study investigates dynamic wetting behaviors of a water droplet placed on surfaces with different wettability and nano-structures. Hydrophobic and hydrophilic properties on as-received silicon wafers were prepared by fabricating thin films of hydrophobic polymer and hydrophilic nanoparticles via layer-by-layer coating. Dynamic advancing contact angle of droplets on the prepared surfaces was measured at various moving velocities of triple contact line with a high-speed video camera. As advancing velocity of triple contact line increased, dynamic advancing contact angle on the as-received silicon and hydrophobic surfaces sharply increased up to $80^{\circ}$ in the range of order of mm/sec whereas the SiO2 nanoparticle-coated hydrophilic surface maintained low contact angles of about $30^{\circ}$ and then it gradually increased in the velocity range of order of hundred mm/sec. The improved dynamic wetting ability observed on the nanostructured hydrophilic surface can benefit the performance of various phase-change heat transfer phenomena under forced convective flow.

A comparative study on the flow patterns in closed loop pulsating heat pipe charged with various working fluids (다양한 작동유체로 충전된 폐쇄 루프 맥동 히트파이프 내부 유동패턴 비교)

  • Kang, Seok Gu;Kim, Seong Keun;Ahmad, Hibal;Jung, Sung Yong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.52-58
    • /
    • 2019
  • Thermal performance and flow patterns inside the closed loop pulsating heat pipe (CLPHP) were experimentally investigated. For investigating the effect of working fluids, CLPHP was filled with various working fluids including methanol, acetone and ethanol. The thermal resistance was calculated by temperatures in evaporator and condenser and flow patterns were visualized by a digital camera. The thermal resistances for all fluids were decreased as the heat increases. Flow patterns change from static slug to elongated slug flows, bulk circulation and annular flows as the heat increases. Dry-out occurs after annular flows. For reasonable comparison of thermal performances, normalized CHF, Kutateladze number (Ku), was compared. Even though ethanol has smallest CHF, Ku of ethanol is similar with that of methanol. In addition, acetone has the highest Ku that means CLPHP with acetone provides the higher thermal performance compared with CLPHP with other fluids.

Quadrotor wake characteristics according to the change of the rotor separation distance (로터 간격에 따른 쿼드로터의 후류특성 변화 연구)

  • Lee, Seungcheol;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2019
  • Rotor wake interaction must be considered to understand the quadrotor flight, and the rotor separation distance is an important parameter that affects the rotor wake interaction. In this study, the wake characteristics were investigated with varying the rotor separation distance. The velocity field in the rotor wake was measured using digital PIV for hovering mode at Re = 34,000, and the wake boundaries from the inner and outer rotor tips were quantitatively compared with varying the rotor separation distance. The symmetric rotor-tip vortex shedding about the rotor axis was found at a large rotor separation distance. However, the wake boundary became more asymmetric about the rotor axis with decreasing the rotor separation distance. At the minimum rotor separation distance, in particular, a faster vortex decay was observed due to a strong vortex interaction between adjacent rotors.