• 제목/요약/키워드: Change Laboratory

검색결과 2,113건 처리시간 0.032초

Changes in the Compound and Bioactivity of Suaeda japonica Makino Extract by Different Harvesting Time

  • Choi, Ji-Hye;Lee, Sung-Gyu;Kang, Hyun
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.376-382
    • /
    • 2020
  • This study was the change of compound and bioactivity were analyzed by different harvesting time (May, August, and November) of Suaeda japonica Makino. The total polyphenol and flavonoid contents of S. japonica were the highest at about 22.81 mg GAE/g and 4.56 mg QE/g, respectively, in the S. japonica harvested in Nov. Also, the contents of quercetin, showed the highest content in Nov harvested S. japonica. In addition, the antioxidative activity of each extract from S. japonica changed depending on harvesting time. For S. japonica harvested in Nov showed the highest DPPH and ABTS radical scavenging activity. From the NO inhibition assay, the S. japonica harvested in Nov had shown the highest anti-inflammatory effects. Therefore, consideration of the optimal harvesting time for S. japonica could be an important factor attributing to its natural antioxidant and anti-inflammatory properties and the optimal harvesting time was confirmed especially to be in Nov.

Response of Saccharomyces cerevisiae to Ethanol Stress Involves Actions of Protein Asr1p

  • Ding, Junmei;Huang, Xiaowei;Zhao, Na;Gao, Feng;Lu, Qian;Zhang, Ke-Qin
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1630-1636
    • /
    • 2010
  • During the fermentation process of Saccharomyces cerevisiae, yeast cells must rapidly respond to a wide variety of external stresses in order to survive the constantly changing environment, including ethanol stress. The accumulation of ethanol can severely inhibit cell growth activity and productivity. Thus, the response to changing ethanol concentrations is one of the most important stress reactions in S. cerevisiae and worthy of thorough investigation. Therefore, this study examined the relationship between ethanol tolerance in S. cerevisiae and a unique protein called alcohol sensitive RING/PHD finger 1 protein (Asr1p). A real-time PCR showed that upon exposure to 8% ethanol, the expression of Asr1 was continuously enhanced, reaching a peak 2 h after stimulation. This result was confirmed by monitoring the fluorescence levels using a strain with a green fluorescent protein tagged to the C-terminal of Asr1p. The fluorescent microscopy also revealed a change in the subcellular localization before and after stimulation. Furthermore, the disruption of the Asr1 gene resulted in hypersensitivity on the medium containing ethanol, when compared with the wild-type strain. Thus, when taken together, the present results suggest that Asr1 is involved in the response to ethanol stress in the yeast S. cerevisiae.

Eu-PEG로 구성된 상변환 발광재료의 합성 및 물성에 대한 연구 (Study of Synthesis and Property of Eu-PEG Phase Change Luminescent Materials)

  • Gu, Xiao-Hua;Xi, Peng;Shen, Xin-Yuan;Cheng, Bo-Wen
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.305-312
    • /
    • 2008
  • A novel TPC-PEG-TPC with active end-groups was obtained from the end-groups of polyethylene glycol (PEG) modified by terephthaloyl chloride (TPC). These active end-groups can link up with a rare earth ion, which is a luminescent center of a rare earth fluorescent complex. Complexes of Eu-PEG with novel ligands (TPC-PEG-PTC) were synthesized by the coordination of the active reactant (as the first ligand) and phenanthroline (as the second ligand) with $Eu^{3+}$.IR, $^1H$-NMR, element analysis, DSC, WAXD, fluorescent spectroscopy, TGA, and SEM were used to characterize the structure and properties of these complexes. The results showed that this type of complex is a heat storage material with the phase change character of polyethylene glycol (PEG) and the luminescent properties of europium. There was no thermal decomposition of the complex of Eu-PEG until $300^{\circ}C$. SEM showed that the complex of Eu-PEG can be dispersed in PE.

Effects of Geography, Weather Variability, and Climate Change on Potato Model Uncertainty

  • Fleisher, D.H.;Condori, B.;Quiroz, R.;Alva, A.;Asseng, S.;Barreda, C.;Bindi, M.;Boote, K.J.;Ferrise, R.;Franke, A.C.;Govindakrishnan, P.M.;Harahagazwe, D.;Hoogenboom, G.;Naresh Kumar, S.;Merante, P.;Nendel, C.;Olesen, J.E.;Parker, P.S.;Raes, D.;Raymundo, R.;Ruane, A.C.;Stockle, C.;Supit, I.;Vanuytrecht, E.;Wolf, J.;Woli, P.
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2016년도 추계 학술발표논문집
    • /
    • pp.41-43
    • /
    • 2016
  • PDF

Macro-Model of Magnetic Tunnel Junction for STT-MRAM including Dynamic Behavior

  • Kim, Kyungmin;Yoo, Changsik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권6호
    • /
    • pp.728-732
    • /
    • 2014
  • Macro-model of magnetic tunnel junction (MTJ) for spin transfer torque magnetic random access memory (STT-MRAM) has been developed. The macro-model can describe the dynamic behavior such as the state change of MTJ as a function of the pulse width of driving current and voltage. The statistical behavior has been included in the model to represent the variation of the MTJ characteristic due to process variation. The macro-model has been developed in Verilog-A.

Physiological Roles of Erythroascorbate Peroxidase In Candida albicans

  • Kwak, Min-kyu;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.41-41
    • /
    • 2001
  • Ascorbate peroxidase catalyze the oxidation of ascorbic acid through the reaction with hydrogen peroxide. Ascorbic acid are utilized as a substrate in oxidative stress. In Candida albieans, ascorbic acid is used as antioxidants, so called D-erythroascorbic acid (EASe). Oxidative stress change concentrations of EASC resulting in interaction with alternative oxidase (AOX).(omitted)

  • PDF

Effect of the Processing History on the Morphology and Properties of the Ternary Blends of Nylon 6, a Thermotropic Liquid Crystalline Polymer, and a Functionalized Polypropylene

  • Yongsok Seo;Kim, Hyong-Jun;Kim, Byeongyeol;Hong, Soon-Man;Hwang, Seung-Sang;Kim, Kwang-Ung
    • Macromolecular Research
    • /
    • 제9권4호
    • /
    • pp.238-246
    • /
    • 2001
  • Properties of ternary blends of nylon 6 (Ny6), a thermotropic liquid crystalline polymer (TLCP, poly(ester amide), 20 wt%) and a maleic anhydride grafted polypropylene (2 wt%) (MAPP) were studied under various processing conditions. TLCP was pre-blended with MAPP first and then the binary one blended again with Ny6. The processing temperature of the second mixing was varied. Thermal properties show the partial miscibility of the ternary blend. The morphology of the TLCP phase in the first blending shows mostly in the fibril bundle shape, but varies between droplets and oriented fibrils after the second processing. Some of TLCP phase lost the fibril morphology during the second processing stage. The morphology variation invokes the change in tensile properties. Low extrusion temperature (270$\^{C}$) provides more fibril shapes, which are associated with less deformation in the second stage. The processing temperature effect was more evident when the draw ratio was high. High drawing was applicable due to the stabilizing action of tile compatibilizer.

  • PDF

Design and Analysis of Refractometer Based on Bend Waveguide Structure with Air Trench for Optical Sensor Applications

  • Ryu, Jin Hwa;Lee, Woo-Jin;Lee, Bong Kuk;Do, Lee-Mi;Lee, Kang Bok;Um, Namkyoung;Baek, Kyu-Ha
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.841-846
    • /
    • 2014
  • This study proposes a novel optical sensor structure based on a refractometer combining a bend waveguide with an air trench. The optical sensor is a $1{\times}2$ splitter structure with a reference channel and a sensing channel. The reference channel has a straight waveguide. The sensing channel consists of a U-bend waveguide connecting four C-bends, and a trench structure to partially expose the core layer. The U-bend waveguide consists of one C-bend with the maximum optical loss and three C-bends with minimum losses. A trench provides a quantitative measurement environment and is aligned with the sidewall of the C-bend having the maximum loss. The intensity of the output power depends on the change in the refractive index of the measured material. The insertion loss of the proposed optical sensor changes from 3.7 dB to 59.1 dB when the refractive index changes from 1.3852 to 1.4452.