• Title/Summary/Keyword: Change Detection

Search Result 2,436, Processing Time 0.025 seconds

Abrupt/Gradual Scene Change Detection Method (급진적/점진적 장면 전환 검출 기법)

  • Baek, Jeong-Uk;Shin, Seong-Yoon;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.179-180
    • /
    • 2009
  • We propose the method of analysis, separation, and express from normalized and standard method to reduce the problem with the existing scene change detection and the complicated and variety of images of real change. In this paper, we propose a new local ${\lambda}^2$-test which was combined the ${\lambda}^2$-existing test methods and local color histograms. This method is robust method of abrupt and gradual detection and solve the problem of traditional method.

  • PDF

A Discussion of the Two Alternative Methods for Quantifying Changes : by Pixel Values Versus by Thematic Categories (변화의 정량화 방법에 관한 고찰 : 픽셀값 대 분류항목별)

  • Choung, Song-Hak
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.193-201
    • /
    • 1993
  • In a number of areas, there are important benefits to be gained when we bring both the detection and monitoring abilities of remote sensing as well as the philosophical approach and analytic capabilities of a geographic information system to bear on a problem. A key area in the joint applications of remote sensing technology and GIS is to identify change. Whether this change is of interest for its own sake, or because the change causes us to act (for example, to update a map), remote sensing provides an excellent suite of tools for detecting change. At the same time, a GIS is perhaps the best analytic toot for quantifying the process of change. There are two alternative methods for quantifying changes. The conceptually simple approach is to un the pixel values in each of the images. This method is practical but may be too simple to identify the variety of changes in a complex scene. The common alternative is called symbolic change detection. The analyst first decides on a set of thematic categories that are important to distinguish for the application. This approach is useful only if accurate landuse/cover classifications can be obtained. Persons conducting digital change detection must be intimately familiar with the environment under study, the quality of the data set and the characteristics of change detection algorithms. Also, much work remains to identify optimum change detection algorithms for specific geographic areas and problems.

  • PDF

Land Cover Change Detection over Urban Stream's Drainage Area Using Landsat TM and ETM+ Images (Landsat TM과 ETM+ 영상을 이용한 도시하천 집수구역의 토지이용변화 파악)

  • Kim, Jae-Cheol;Park, Cheol-Hyun;Shin, Dong-Hoon;Lee, Kyoo-Seock
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.575-579
    • /
    • 2006
  • The land use in suburban area has been changed rapidly due to the urban expansion in Korea during the last few decades. And such land use changes result in various environmental problems such as biodiversity decrease, habitat fragmentation, air pollution and urban heat island. Remote Sensing (RS) and Geographical Information Systems (GIS) can be used for land cover change detection to understand the impact and trend of the land use change. Change detection is the process of identifying differences in the state of an object or phenomenon by observing it at different times and it can provide quantitative and comparative information for the land use/cover change. RS is less expansive than field survey for producing land use maps, and can be accessed quickly and repetitively for large area. Also it can be used for change detection using multi-temporal land use/cover by accumulated data. Therefore, the purpose of this study is to detect and quantitatively evaluate urban land cover change in urban stream watershed area for the last few decades and ultimately to provide the basic data for urban land use planning and management.

Variable Dynamic Threshold Method for Video Cut Detection (동영상 컷 검출을 위한 가변형 동적 임계값 기법)

  • 염성주;김우생
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.356-363
    • /
    • 2002
  • Video scene segmentation is fundamental role for content based video analysis and many kinds of scene segmentation schemes have been proposed in previous researches. However, there is a problem, which is to find optimal threshold value according to various kinds of movies and its content because only fixed single threshold value usually used for cut detection. In this paper, we proposed the variable dynamic threshold method, which change the threshold value by a probability distribution of cut detection interval and information of frame feature differences and cut detection interval in previous cut detection is used to determine the next cut detection. For this, we present a cut detection algorithm and a parameter generation method to change the threshold value in runtime. We also show the proposed method, which can minimize fault alarm rate than the existing methods efficiently by experimental results.

Change Attention-based Vehicle Scratch Detection System (변화 주목 기반 차량 흠집 탐지 시스템)

  • Lee, EunSeong;Lee, DongJun;Park, GunHee;Lee, Woo-Ju;Sim, Donggyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.228-239
    • /
    • 2022
  • In this paper, we propose an unmanned vehicle scratch detection deep learning model for car sharing services. Conventional scratch detection models consist of two steps: 1) a deep learning module for scratch detection of images before and after rental, 2) a manual matching process for finding newly generated scratches. In order to build a fully automatic scratch detection model, we propose a one-step unmanned scratch detection deep learning model. The proposed model is implemented by applying transfer learning and fine-tuning to the deep learning model that detects changes in satellite images. In the proposed car sharing service, specular reflection greatly affects the scratch detection performance since the brightness of the gloss-treated automobile surface is anisotropic and a non-expert user takes a picture with a general camera. In order to reduce detection errors caused by specular reflected light, we propose a preprocessing process for removing specular reflection components. For data taken by mobile phone cameras, the proposed system can provide high matching performance subjectively and objectively. The scores for change detection metrics such as precision, recall, F1, and kappa are 67.90%, 74.56%, 71.08%, and 70.18%, respectively.

Using Structural Changes to support the Neural Networks based on Data Mining Classifiers: Application to the U.S. Treasury bill rates

  • Oh, Kyong-Joo
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.57-72
    • /
    • 2003
  • This article provides integrated neural network models for the interest rate forecasting using change-point detection. The model is composed of three phases. The first phase is to detect successive structural changes in interest rate dataset. The second phase is to forecast change-point group with data mining classifiers. The final phase is to forecast the interest rate with BPN. Based on this structure, we propose three integrated neural network models in terms of data mining classifier: (1) multivariate discriminant analysis (MDA)-supported neural network model, (2) case based reasoning (CBR)-supported neural network model and (3) backpropagation neural networks (BPN)-supported neural network model. Subsequently, we compare these models with a neural network model alone and, in addition, determine which of three classifiers (MDA, CBR and BPN) can perform better. For interest rate forecasting, this study then examines the predictability of integrated neural network models to represent the structural change.

  • PDF

On study for change point regression problems using a difference-based regression model

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.539-556
    • /
    • 2019
  • This paper derive a method to solve change point regression problems via a process for obtaining consequential results using properties of a difference-based intercept estimator first introduced by Park and Kim (Communications in Statistics - Theory Methods, 2019) for outlier detection in multiple linear regression models. We describe the statistical properties of the difference-based regression model in a piecewise simple linear regression model and then propose an efficient algorithm for change point detection. We illustrate the merits of our proposed method in the light of comparison with several existing methods under simulation studies and real data analysis. This methodology is quite valuable, "no matter what regression lines" and "no matter what the number of change points".

Improving Performance of Change Detection Algorithms through the Efficiency of Matching (대응효율성을 통한 변화 탐지 알고리즘의 성능 개선)

  • Lee, Suk-Kyoon;Kim, Dong-Ah
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.145-156
    • /
    • 2007
  • Recently, the needs for effective real time change detection algorithms for XML/HTML documents and increased in such fields as the detection of defacement attacks to web documents, the version management, and so on. Especially, those applications of real time change detection for large number of XML/HTML documents require fast heuristic algorithms to be used in real time environment, instead of algorithms which compute minimal cost-edit scripts. Existing heuristic algorithms are fast in execution time, but do not provide satisfactory edit script. In this paper, we present existing algorithms XyDiff and X-tree Diff, analyze their problems and propose algorithm X-tree Diff which improve problems in existing ones. X-tree Diff+ has similar performance in execution time with existing algorithms, but it improves matching ratio between nodes from two documents by refining matching process based on the notion of efficiency of matching.

A shot change detection algorithm based on frame segmentation and object movement (프레임 블록화와 객체의 이동을 이용한 샷 전환 탐지 알고리즘)

  • Kim, Seung-Hyun;Hwang, Doosung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a shot change detection algorithm by using frame segmentation and the object changes among moving blocks. In order to detect the rapid moving changes of objects between two consecutive frames, the moving blocks on the diagonal are defined, and their histograms are calculated. When a block of the current frame is compared to the moving blocks of the next frame, the block histograms are used and the threshold of a shot change detection is automatically adjusted by Otsu's threshold method. The proposed algorithm was tested for the various types of color or gray videos such as films, dramas, animations, and video tapes in National Archives of Korea. The experimental results showed that the proposed algorithm could enhance the detection rate when compared to the studied methods that use brightness, histogram, or segmentation.

Fall Detection Based on Human Skeleton Keypoints Using GRU

  • Kang, Yoon-Kyu;Kang, Hee-Yong;Weon, Dal-Soo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.83-92
    • /
    • 2020
  • A recent study to determine the fall is focused on analyzing fall motions using a recurrent neural network (RNN), and uses a deep learning approach to get good results for detecting human poses in 2D from a mono color image. In this paper, we investigated the improved detection method to estimate the position of the head and shoulder key points and the acceleration of position change using the skeletal key points information extracted using PoseNet from the image obtained from the 2D RGB low-cost camera, and to increase the accuracy of the fall judgment. In particular, we propose a fall detection method based on the characteristics of post-fall posture in the fall motion analysis method and on the velocity of human body skeleton key points change as well as the ratio change of body bounding box's width and height. The public data set was used to extract human skeletal features and to train deep learning, GRU, and as a result of an experiment to find a feature extraction method that can achieve high classification accuracy, the proposed method showed a 99.8% success rate in detecting falls more effectively than the conventional primitive skeletal data use method.