• Title/Summary/Keyword: Chamber wall condition

Search Result 69, Processing Time 0.023 seconds

Optimization of Inner Nitriding Process for Cr-Mo-V Steel of Small Arms Barrel by using Taguchi Experimental Design Method (다구찌 실험계획법을 이용한 소구경화기 총열 내부용 Cr-Mo-V강의 질화공정 최적화)

  • Kwon, Hyuk-Rin;Kim, Dong-Eun;Son, Hyung-Dong;Shin, Jea-Won;Park, Jae-Ha;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.148-154
    • /
    • 2018
  • When shooting small arms, the inner surface temperature is heated up to about $700{\sim}1,000^{\circ}C$ by the friction of the bullet and the inner wall of the barrel and the combustion of propellant. High-temperature propellant gas and high-speed movement of the bullet cause corrosion of the inner wall, which is noticeable immediately in front of the chamber. In this study, the mechanical properties of Cr-Mo-V steel, which is the base material, were tested using Taguchi experimental design to find the best nitriding treatment conditions. For the nitriding process, the working time, salt bath temperature, and salt concentration were combined as three conditions and placed in the $L_9(3^4)$, orthogonal array table. The thicknesses of the white layer and the nitrogen diffusion layer were measured after nitriding under each condition in a salt bath furnace. Durability was evaluated by measuring the degree of dispersion through actual shooting because it was difficult to evaluate the mechanical properties of the cylinder inner structure. As a result, it was confirmed that the durability was optimal at $565^{\circ}C$, 1 hour, 0.5%. These optimal conditions were selected by the statistical analysis of the Minitab program(ver.17).

A Study on the Factors of Spatial Scattered Ray Occurrence in the X-ray Radiography Room (엑스선 촬영실의 공간산란선 발생 인자에 관한 연구)

  • Na, Soo-Kyung;Han, Sang-Hyo
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.393-399
    • /
    • 2009
  • In this study, we measured the dose distribution of scattered ray in X-ray radiography room using an ion chamber and examined the dependency of scattered ray content on the scattered ray source and exposure condition. To study the factors of scattered ray occurrence in the acryl phantom, we measured the change in the scatted ray content according to the X-ray tube voltage (40~140 kV) and the field size ($10{\times}10\;cm^2$, $20{\times}20\;cm^2$, $35{\times}35\;cm^2$). For the $35{\times}35\;cm^2$ field size, the side-scattering rate ranged from 3.1% to 14.5%. The scattered ray contributions of the phantom, collimator, X-ray tube and wall were also measured. The scattered ray contribution of the phantom was higher than 95.4% for the entire tube voltage, and those of the collimator, X-ray tube and wall were 2.6%, 1.3% and 0.7%, respectively.

  • PDF

A Study on the Behavior of the Free Space Scatter dose in X-ray Diagnostic Room (X선촬영실 내에서의 공간산란선량 변동에 관한 연구)

  • Oh, Hyun-Joo;Kim, Sung-Soo;Kim, Young-Il;Lim, Han-Young;Kim, Heung-Tae;Lee, Who-Min;Kim, Hak-Sung;Lee, Sang-Suk
    • Journal of radiological science and technology
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 1994
  • In this pauper, when the X-ray exposure condition is 70, 90, 110 kV, 10 mAs, FFD 180 cm, FSO $10{\times}10$, $35{\times}35\;cm$, toward the $36{\times}36{\times}15\;cm$ acryl phantom, the free space scatter dose rate at the 15th points in X-ray diagnostic room was measured by electrometer and 1800 co ionization chamber. Therefore, the free space scatter dose distribution profile was drown, and then, the free space scatter dose contribution percentage was Investigated. The obtained results are summarized as following. 1. The X-ray tube leakage dose rate of the experiment generator at the 1 m from focus was measured maximum 85 mR/hr, minimum 20 mR/hr, therefore, this values was appeared below the KS rules, 2. The free space scatter dose become to larger at the primary X-ray beam around area, and lower at the back ward X-ray tube. The maximum values were 3,812 mR/hr at the front Lt 1 m $45^{\circ}$ point, minimum 117 mR/hr at the back ward 1 m $180^{\circ}C$ point. 3. As the more tube voltage and field size increase, the more free space scatter dose contribution percentage become to increase, as to 90 kV from 70 kV, increase to 12 %, to 110 kV from 90 kV, increase to 18 %, and then, become to 11 % at the $10{\times}10\;cm$ and 87 % at the $35{\times}35\;cm$. 4. The 89 % of the total producted scatter ray occured from acryl phantom, at the X-ray tube housing 6 %, at the front side back wall 5 %. 5. The free space scatter dose contribution percentage at the one point build up 80 % from the phanton direction, 14 % from the X-ray tube and collimator direction, 2.2 % from the front wall, 1.8 % from the side wall, 1.7 % the back wall.

  • PDF

The Effects of Operational and Mechanical Factors on the Performance of Rice-Husk Furnace (왕겨연소기(燃燒機)의 성능(性能)에 영향(影響)을 마치는 설계(設計) 및 작동인자(作動因子)에 관(關)한 연구(硏究))

  • Park, Seung Je;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.39-48
    • /
    • 1983
  • This study was performed to obtain the basic data which could be used for the modification of the manual center-burner-type rice-husk furnace into a small scale automatic type for the multi-purpose use in the farm. For this purpose, first, the utilization feasibility of the rice-husk furnace in the farm was analyzed briefly in aspects of available amount of rice-husk for the fuel, annual operation time and replaceble amount of residential heating energy with rice-husk in the farm. For the experiment a prototype furnace geared with an automatic feeding device was fabricated, and feed rate, mold size and chimney height were changed to investigate the combustion efficiency of rice-husk and thermal efficiency of the furnace. Also, optimum and limiting operational factors were observed in each treatments. The results obtained are summarized as follows. 1. If the rice-husk is intensively used for residential heating in the farm for winter season, on an average 51 percent of the total heating energy can be replaced with the rice-husk. Therefore, development of a small scale automatic rice-husk furnace was recognized to be feasible. 2. The operational condition depending on husk-feed rates was very important factor for successive steady burning operation of the given furnace. When the feed-rate was 1.5 kg/hr, the top of the burning zone should be kept at the position about 55 cm from the bottom of the combustion chamber with the periodic removal of ash (termed as steady state position), which was 18 cm above the mold waist. When the feed rates were 2.4 kg/hr and 3.0 kg/hr, the steady state position was at about 4 cm above the mold waist. 3. The mold size affected inflow rate of air into the furnace and consequently CO content in the exhaust gas. The relatively bigger mold gave positive effect on the air-inflow rate. 4. When the husk-feed rates were 1.5 kg/hr, 2.4 kg/hr, 3.0 kg/hr, the combustion efficiencies of the rice-husk were 98.5%, 97.4% and 95.0%, the thermal efficiencies of the furnace were 93.4%, 93.2% and 87.6%, and CO content in the exhaust gas were 1.21%, 1.03%, and 2.43%, respectively. The air-inflow rates were decreased with the increase of feed rates. When the amount of excess air was 30-40%, the CO content in the exhaust gas was at the minimum level. 5. When the chimney height was lowered from 260 cm to 96 cm, the air-inflow rate was slightly decreased, but the average temperature in the combustion chamber, CO content in the exhaust gas and combustion and thermal efficiencies were not changed significantly. 6. The incidental problems associated with the protytype furnace were accumulation of the ash inside the mold, accumulation of the cinder between the outer-drum of the furnace and the combustion chamber wall, and accumulation of the cinder in the chimney.

  • PDF

A Numerical Study of the Flow Field in the Combustion Chamber of the I.C Engine with Offset Valve (편심 밸브를 갖는 내연기관의 연소실 내부 유동장에 대한 수치적 연구)

  • 양희천;최영기;유홍선;고상근;허선무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1552-1565
    • /
    • 1992
  • Three dimensional numerical calculations were carried out for two different combustion chambers with the offset valve in order to investigate the swirl and the squish effects on the flow fields. The modified K-.epsilon. turbulence model considering the change of the density under the condition of the rapid compression and expansion of the pistion was used. During the compression process, it was found that the squish flow which controls the subsequent combustion process was produced due to the piston bowl in the bowl piston type combustion chambers but not for the flat piston type. The swirl velocity close to the solid body rotation was maintained in the flat piston type combustion chambers, but for the bowl piston type a resulting from the change of the solid body rotation was generated in the radial-circumferential plane. For the swirl ratio effect, as the swirl ratio increases, it was found that a large and strong vortex was generated in the radial-circumferential plane of bowl piston type combustion chambers because of the strong inward flows from the combustion chamber wall. These computational results were compared with the results of LDA measurement.

Effects of Soil Conditions on the Behavior of Open -Ended Steel Pipe Pile (지반조건의 변화가 개단강관말뚝의 거동에 미치는 영향)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.3
    • /
    • pp.23-34
    • /
    • 1993
  • Model pile teats, using large calibration chamber in which the stress state and the relative density can be controlled, were performed in order to study on the effect of soil condition on the behavior of open-ended steel pipe pile. The model pipe pile was made up of two pipes to separately measure each component of bearing capacity of open -ended steel pipe pile. According to the tests results, pile plugging and driving resistance of the pile installed in sand were primarily dependent on the horizontal stress and the relative density. Plug bearing capacity, outside skin fricition and total bearing capacity were also mainly dependent on the horizontal stress and relative density. Moreover, the ratio of the horizontal stress acting on the outside wall of open -ended pipe pile after installation to the original horizontal stress was not nearly affected by original value of horizontal stress. It is bigger than one in the case of dense deposit, equal to one for medium deposit, and smaller than one for very loose deposit. It seems to be mainly dependent on the relative density for a given soil.

  • PDF

Computer Simulation for Development of Electron Gun for MCP Cleaning (MCP 세척용 전자총 개발을 위한 컴퓨터 시뮬레이션)

  • Kim, Sung Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.43-49
    • /
    • 2018
  • Computer simulation was performed using the SIMION program to develop an electron gun for MCP cleaning. The target, MCP, is located 180mm from the source of the electron gun, and the diameter of the MCP is approximately 20mm. Therefore, we tried to find the condition that the beam diameter of electrons reaching the MCP is to be 20mm using four variables such as E, ${\phi}$, d1, d2, where the E is the energy of the electron reaching the MCP, the ${\phi}$ is the diameter of the extractor, and the d1 and the d2 are the distance from the electron source to the end of the extractor tube, and to the wall of chamber, respectively. As a result of simulation, we figuried out that the E and the d2 have little effect on the beam diameter. On the other hand, we also found that the beam diameters were very sensitive to the d1 and varied relatively large with respect to the ${\phi}$, and the d1 was the secondary order function of the ${\phi}$. Therefore we found that this function will allow us to design electron guns that are suitable for the purposes of this study.

Dose Distribution of Co-60 Photon Beam in Total Body Irradiation (Co-60에 의한 전신조사시 선량분포)

  • Kang, Wee-Saing
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.109-120
    • /
    • 1991
  • Total body irradiation is operated to irradicate malignant cells of bone marrow of patients to be treated with bone marrow transplantation. Field size of a linear accelerator or cobalt teletherapy unit with normal geometry for routine technique is too small to cover whole body of a patient. So, any special method to cover patient whole body must be developed. Because such environments as room conditions and machine design are not universal, some characteristic method of TBI for each hospital could be developed. At Seoul National University Hospital, at present, only a cobalt unit is available for TBI because source head of the unit could be tilted. When the head is tilted outward by 90$^{\circ}$, beam direction is horizontal and perpendicular to opposite wall. Then, the distance from cobalt source to the wall was 319 cm. Provided that the distance from the wall to midsagittal plane of a patient is 40cm, nominal field size at the plane(SCD 279cm) is 122cm$\times$122cm but field size by measurement of exposure profile was 130cm$\times$129cm and vertical profile was not symmetric. That field size is large enough to cover total body of a patient when he rests on a couch in a squatting posture. Assuming that average lateral width of patients is 30cm, percent depth dose for SSD 264cm and nominal field size 115.5cm$\times$115.5cm was measured with a plane-parallel chamber in a polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom of size 25cm wide and 30cm deep. Depth of dose maximum, surface dose and depth of 50% dose were 0.3cm, 82% and 16.9cm, respectively. A dose profile on beam axis for two opposing beams was uniform within 10% for mid-depth dose. Tissue phantom ratio with reference depth 15cm for maximum field size at SCD 279cm was measured in a small polystyrene phantom and was linear over depth range 10~20cm. An anthropomorphic phantom with TLD chips inserted in holes on the largest coronal plane was bilaterally irradiated by 15 minute in each direction by cobalt beam aixs in line with the cross line of the coronal plane and contact surface of sections No. 27 and 28. When doses were normalized with dose at mid-depth on beam axis, doses in head/neck, abdomen and lower lung region were close to reference dose within $\pm$ 10% but doses in upper lung, shoulder and pelvis region were lower than 10% from reference dose. Particulaly, doses in shoulder region were lower than 30%. On this result, the conclusion such that under a geometric condition for TBI with cobalt beam as SNUH radiotherapy departement, compensators for head/neck and lung shielding are not required but boost irradiation to shoulder is required could be induced.

  • PDF

Experimental Study on the Characteristics of Asphalt Seal Waterproofing Material for Underground External Walls According to Temperature (온조도건에 따른 외벽방수용 아스팔트 씰계 재료의 흘러내림 특성에 관한 실험)

  • Um, Tae-Ho;Kim, Young-Sam;Shin, Hong-Chul;Cho, Jae-Woo;Kim, Young-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • The present study investigated the characteristics of vertical sagging down of high temperature in chamber and characteristics of vertical sagging down in the outdoor asphalt sheet and asphalt seal under korea ltimate condition using asphalt seal products of solvent based type, solventless type, water dispersion type, and heat melting type, which are currently applied in Korea. Prior to the investigation of outdoor vertical sagging down characteristics, the assessment of sagging down performance of single use of sealing products at $20^{\circ}C$, $40^{\circ}C$, $60^{\circ}C$ was conducted and the result showed that sagging down did not occur at $20^{\circ}C$ but some solventless type, water dispersion type specimens at $40^{\circ}C$ had sagging down up to 10 mm. In addition, some solventless type, water dispersion type specimens had sagging down up to 55 mm at $60^{\circ}C$. For specimens to which asphalt seal and renovated asphalt sheet were layered over the outdoor concrete vertical surface, sheet sagging and sagging down occurred up to 50 mm in water dispersion specimens after three month later since the construction in summer.