• Title/Summary/Keyword: Chamber experiment

Search Result 757, Processing Time 0.027 seconds

Behavioral responses and tolerance limits of wild goldeye rockfish Sebastes thompsoni to high temperature exposure (고 수온 노출에 따른 자연산 불볼락 Sebastes thompsoni의 행동반응 및 내성 한계)

  • Sung-Jin Yoon;Jin-Hyeok Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.247-254
    • /
    • 2022
  • To investigate the tolerance limit and critical thermal maximum (CTM), behavioral responses of wild goldeye rockfish Sebastes thompsoni according to exposure to high water temperature were observed using a continuous behavior tracking system. As a result, behavioral index (BI) of S. thompsoni in each temperature (20.0, 25.0, and 30.0℃) showed a significant difference (p<0.05) when compared with the value measured in a stable condition of 15.0℃. The activity level of S. thompsoni exposed to 25.0℃ decreased sharply after 20 hours. Their rest time at the bottom of experiment chamber increased, and their normal swimming and metabolic activities were disturbed. In addition, at a high water temperature of 30.0℃, S. thompsoni reached the limit of resistance and showed a sub-lethal reaction of swimming behavior, with energy consumption in the body increased and all test organisms died. In conclusion, the eco-physiological response of S. thompsoni to water temperature varied greatly depending on the fluctuation range of the exposed temperature and the exposure time. In addition, the tolerance limit of S. thompsoni to high water temperature was predicted to be 25.0-30.0℃. The maximum critical thermal that had a great influence on the survival of this species was found to be around 30.0℃.

Reduction of Stress Caused by Drought and Salt in Rice (Oryza sativa L.) Crops through Applications of Selected Plant Extracts and the Physiological Response Mechanisms of Rice

  • Hyun Hwa Park;Young Seon Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.57-57
    • /
    • 2022
  • In many areas of the world, salt damage and drought have had a negative impact on human survival due to a decrease in agricultural productivity. For instance, about 50% of agricultural land will be affected by salt damage by 2050. Biostimulants such as plant extracts can not only increase the nutrient utilization efficiency of plants, but also promote plant growth and increase resistance to abiotic or biotic stress. Therefore, the objective of this study was to determine how selected plant extracts might reduce levels of stress caused by drought and salt and to better understand the physiological response mechanisms of rice plants. In this study, we used Soybean leaves, Soybean stems and Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts were used. These extracts had been used in previous studies and were found to be effective. The materials were dried in a dry oven at 50℃ for 5 days and ground using a blender. Each 50 g of materials was put in 1 L of distilled water, stirred for 24 hours, filtered using 4 layers of mirocloth, and then concentrated using a concentrator. Rice (cv. Hopumbyeo) seeds were immersed and germinated, and then sown in seedbeds filled with commercial soil. In drought experiments, three rice seedlings at 1 week after seeding was transplanted into 100 ml cups filled with commercial soils and grown until the 4-leaf stage. For this experiment, the soil weight in a cup was equalized, and water was allowed to become 100% saturated and then drained for 24 hours. Thereafter, plant extracts at 3% concentrations were applied to the soils. For NaCl treatments, rice plants at 17 days after seeding were treated with either 100 mM NaCl or plant extracts at 1%+ 100 mM NaCl combinations in the growth chamber. Leaf injury, relative water content, photosynthetic efficiency, and chlorophyll contents were measured at 3, 5, and 6 days after treatments. Shoot fresh weight of rice under drought conditions increased 28-37% in response to treatments of Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Shoot fresh weight of rice subjected to 100 mM NaCl treatments also increased by 6-24% in response to Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Compared to the control, rice plants treated with these six extracts and subjected to drought conditions had significantly higher relative water content, Fv/Fm, total chlorophyll and total carotenoids than control plants. With the exception of relative water contents, rice plants treated with the six extracts and subjected to salt stress (100 mM NaCl treatments) had significantly higher Fv/Fm, total chlorophyll and total carotenoids than control plants. However, the type of extract used did not produce significant difference in these parameters. Thus, all the plant extracts used in this study could mitigate drought and NaCl stresses and could also contribute substantially to sustainable crop production.

  • PDF

Photosynthesis Monitoring of Rice using SPAR System to Respond to Climate Change

  • Hyeonsoo Jang;Wan-Gyu Sang;Yun-Ho Lee;Hui-woo Lee;Pyeong Shin;Dae-Uk Kim;Jin-Hui Ryu;Jong-Tag Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.169-169
    • /
    • 2022
  • Over the past 100 years, the global average temperature has risen by 0.75 ℃. The Korean Peninsula has risen by 1.8 ℃, more than twice the global average. According to the RCP 8.5 scenario, the CO2 concentration in 2100 will be 940 ppm, about twice as high as current. The National Institute of Crop Science(NICS) is using the SPAR (Soil-Plant Atmosphere Research) facility that can precisely control the environment, such as temperature, humidity, and CO2. A Python-based colony photosynthesis algorithm has been developed, and the carbon and nitrogen absorption rate of rice is evaluated by setting climate change conditions. In this experiment, Oryza Sativa cv. Shindongjin were planted at the SPAR facility on June 10 and cultivated according to the standard cultivation method. The temperature and CO2 settings are high temperature and high CO2 (current temperature+4.7℃ temperature+4.7℃·CO2 800ppm), high temperature single condition (current temperature+4.7℃·CO2 400ppm) according to the RCP8.5 scenario, Current climate is set as (current temperature·CO2400ppm). For colony photosynthesis measurement, a LI-820 CO2 sensor was installed in each chamber for setting the CO2 concentration and for measuring photosynthesis, respectively. The colony photosynthetic rate in the booting stage was greatest in a high temperature and CO2 environment, and the higher the nitrogen fertilization level, the higher the colony photosynthetic rate tends to be. The amount of photosynthesis tended to decrease under high temperature. In the high temperature and high CO2 environment, seed yields, the number of an ear, and 1000 seed weights tended to decrease compared to the current climate. The number of an ear also decreased under the high temperature. But yield tended to increase a little bit under the high temperature and high CO2 condition than under the high temperature. In addition, In addition to this study, it seems necessary to comprehensively consider the relationship between colony photosynthetic ability, metabolite reaction, and rice yield according to climate change.

  • PDF

Evaluation of Ventilation Performances for Various Combinations of Inlets and Outlets in a Residential Unit through CO2 Tracer-Gas Concentration Decay Method (CO2 추적가스 농도감소법을 이용한 공동주택의 급·배기구 조합에 따른 환기 성능 분석)

  • Sang Yoon Lee;Soo Man Lee;Jong Yeob Kim;Gil Tae Kim;Byung Chang Kwag
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.111-120
    • /
    • 2023
  • Indoor air quality has become increasingly important with the increase in time spent in residential environments, impact of external fine dust, yellow dust, and the post-COVID 19 pandemic. Residential mechanical ventilation plays a key role in addressing indoor air quality. The legal standard for residential air changes per hour in Korea is 0.5 ACH. However, there are no standards for the location of supply and return vents. This study atempts to analyze the impact of ventilation performance based on the location of supply and return vents. An experiment was conducted using the CO2 tracer gas concentration decay method in a mock-up house set inside a large chamber to minimize external influences. The experimental results indicated that the commonly used combination of 2 supply and 2 return vents in living room spaces had a lower mean age of air than the combination of 1 supply and 2 return vents. Using multiple supply and return vents had lower mean age of air than using just 1 supply and 1 return vent.

A Study on the Additional Radiation Exposure Dose of kV X-ray Based Image Guided Radiotherapy (kV X선 기반 영상유도방사선치료의 추가 피폭선량에 관한 연구)

  • Gha-Jung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1157-1164
    • /
    • 2023
  • This study measures the additional dose for each treatment area using kV X-ray based OBI (On-Board Imager) and CBCT (Cone-Beam CT), which have excellent spatial resolution and contrast, and evaluates the adequacy and stability of radiation management aspects of IGRT. The subjects of the experiment were examined with OBI and CBCT attached to a linear accelerator (Clinac IX), and ring-shaped Halcyon CBCT under imaging conditions for each treatment area, and the dose at the center was measured using an ion chamber. OBI single fraction dose was measured as 0.77 mGy in the head area, 3.04 mGy in the chest area, and 7.19 mGy in the pelvic area. The absorbed doses from the two devices, Clinac IX CBCT and Halcyon CBCT, were measured to be similar in the pelvic area, at 70.04 mGy and 70.45 mGy. and in chest CBCT, the Clinac IX absorbed dose (70.05 mGy) was higher than the Halcyon absorbed dose (21.01 mGy). The absorbed dose to the head area was also higher than that of Clinac IX (9.08 mGy) and Halcyon (5.44 mGy). In kV X-ray-based IGRT, additional radiation exposure due to photoelectric absorption may affect the overall volume of the treatment area, and caution is required.

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods (당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석)

  • Park, Jong-Seok;Kim, Sung-Jin;Kim, Hong-Ju;Choi, Jong-Myung;Lee, Gong-In
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

Thermophysiological Responses of Wearing Safety Hat for Working at a Hot Environment (서열환경하에서 안전모 착용시의 인체생리학적 반응)

  • 박소진;김희은
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.74-82
    • /
    • 2002
  • The present study is aimed to investigate the effect of the safety hat on the balance of body temperature by observation of the physiological response under hot working environment. The experiment was carried out in a climate chamber of 3$0^{\circ}C$, 50%RH for 70 minutes. To compare the two kinds of safety hat, 5 healthy male subjects worn safety hat without hole (called 'without hole') or safety hat with hole (called 'with hole') according to a randomized cross-over design. The main results of this study are as fellows: Rectal temperature and heart rate were significantly lower level in 'with hole'than in 'without hole'. The mean skin temperature was significantly higher in 'without hole'than in 'with hole'. Blood pressure were significantly low in 'with hole'. Sweat rate which was measured by weight loss before and after experiment was higher in 'without hole'. In subjective ratings, subjects replied more hot, more uncomfortable and more wet, they felt more fatigue in condition of 'without hole'. Work ability which was measured by a grip strength dynamometer was higher in 'with hole'. Safety hat which can be used for safety of the brain in work place is meaningful device of behavioral thermoregulatory response under the hot working environment. The safety hat which is designed for proper ventilation and hygiene can maintain the homeostasis of body temperature by releasing body temperature efficiently.

Uptake of Fe and Mn in Red Pepper and Tomato Plants under Different Soil Conditions (토양조건에 따른 고추와 토마토의 철 및 망간 흡수특성)

  • Lee, Ju-Young;Sung, Jwa-Kyung;Park, Jae-Hong;Lee, Su-Yeon;Park, Seong-Yong;Lee, Ye-Jin;Kim, Tae-Wan;Song, Beom-Heon;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.207-213
    • /
    • 2009
  • This experiment was performed to understand the relationship between uptake of Fe and Mn by plants, red pepper and tomato, and soil physico-chemical properties under different soil conditions at an environmentally controlled chamber in NAAS(National Academy of Agricultural Science) in 2008. After the dipping for 3 days, four treatments, dipping, dipping+aeration, drainage, drainage+aeration, were set up to investigate the changes in soil redox potential and moisture content. Drainage+aeration changed soil to the oxidation condition from 72 hrs of treatment, and soil moisture content was immediately reduced after treatment. Uptake of Fe and Mn of red pepper was investigated with two treatments, soil only and the mixed[soil(50%) : bed soil(35%) : bark(15%)]. Red pepper leaves taken at 30 days after treatment absorbed excessively Mn from the treatment of soil only and the mixed, and thus uptake of iron was strongly reduced. Also, uptake pattern of Fe and Mn of tomato was examined with four treatment, soil only, soil(50%) + rice straw(50%), soil(50%) + compost(50%) and soil + aeration. Contents of Fe and Mn in tomato leaves was measured at 60 days after treatment. Fe content was the greatest in soil(50%) + compost(50%) whereas Mn content was the highest in soil only. As a result of this experiment, plant growth was stronger influenced by soil moisture content than redox potential or porosity, and the oxidation status of soil was likely to promote that plant predominantly absorbed Mn from soil and thus resulted in Fe deficiency.

Dry etching of polycarbonate using O2/SF6, O2/N2 and O2/CH4 plasmas (O2/SF6, O2/N2와 O2/CH4 플라즈마를 이용한 폴리카보네이트 건식 식각)

  • Joo, Y.W.;Park, Y.H.;Noh, H.S.;Kim, J.K.;Lee, S.H.;Cho, G.S.;Song, H.J.;Jeon, M.H.;Lee, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We studied plasma etching of polycarbonate in $O_2/SF_6$, $O_2/N_2$ and $O_2/CH_4$. A capacitively coupled plasma system was employed for the research. For patterning, we used a photolithography method with UV exposure after coating a photoresist on the polycarbonate. Main variables in the experiment were the mixing ratio of $O_2$ and other gases, and RF chuck power. Especially, we used only a mechanical pump for in order to operate the system. The chamber pressure was fixed at 100 mTorr. All of surface profilometry, atomic force microscopy and scanning electron microscopy were used for characterization of the etched polycarbonate samples. According to the results, $O_2/SF_6$ plasmas gave the higher etch rate of the polycarbonate than pure $O_2$ and $SF_6$ plasmas. For example, with maintaining 100W RF chuck power and 100 mTorr chamber pressure, 20 sccm $O_2$ plasma provided about $0.4{\mu}m$/min of polycarbonate etch rate and 20 sccm $SF_6$ produced only $0.2{\mu}m$/min. However, the mixed plasma of 60 % $O_2$ and 40 % $SF_6$ gas flow rate generated about $0.56{\mu}m$ with even low -DC bias induced compared to that of $O_2$. More addition of $SF_6$ to the mixture reduced etch of polycarbonate. The surface roughness of etched polycarbonate was roughed about 3 times worse measured by atomic force microscopy. However examination with scanning electron microscopy indicated that the surface was comparable to that of photoresist. Increase of RF chuck power raised -DC bias on the chuck and etch rate of polycarbonate almost linearly. The etch selectivity of polycarbonate to photoresist was about 1:1. The meaning of these results was that the simple capacitively coupled plasma system can be used to make a microstructure on polymer with $O_2/SF_6$ plasmas. This result can be applied to plasma processing of other polymers.

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.