• 제목/요약/키워드: Challenging work

검색결과 310건 처리시간 0.034초

Resource-constrained Scheduling at Different Project Sizes

  • Lazari, Vasiliki;Chassiakos, Athanasios;Karatzas, Stylianos
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.196-203
    • /
    • 2022
  • The resource constrained scheduling problem (RCSP) constitutes one of the most challenging problems in Project Management, as it combines multiple parameters, contradicting objectives (project completion within certain deadlines, resource allocation within resource availability margins and with reduced fluctuations), strict constraints (precedence constraints between activities), while its complexity grows with the increase in the number of activities being executed. Due to the large solution space size, this work investigates the application of Genetic Algorithms to approximate the optimal resource alolocation and obtain optimal trade-offs between different project goals. This analysis uses the cost of exceeding the daily resource availability, the cost from the day-by-day resource movement in and out of the site and the cost for using resources day-by-day, to form the objective cost function. The model is applied in different case studies: 1 project consisting of 10 activities, 4 repetitive projects consisting of 40 activities in total and 16 repetitive projects consisting of 160 activities in total, in order to evaluate the effectiveness of the algorithm in different-size solution spaces and under alternative optimization criteria by examining the quality of the solution and the required computational time. The case studies 2 & 3 have been developed by building upon the recurrence of the unit/sub-project (10 activities), meaning that the initial problem is multiplied four and sixteen times respectively. The evaluation results indicate that the proposed model can efficiently provide reliable solutions with respect to the individual goals assigned in every case study regardless of the project scale.

  • PDF

Key Indicators for Evaluating BIM Collaboration Performances.

  • Sacchettini, Lou;Park, Moonseo;Lee, Hyun-Soo;Lee, Jin Gang
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.236-240
    • /
    • 2015
  • The accelerating adoption of BIM (Building Information Modeling) is challenging collaboration practices established in the construction industry. The implementation of BIM involves changes in participants work, organization, processes and collaboration methods. Therefore there is a need to be able to measure effectively and accurately collaboration, in order to analyze and determine current practices and their performances in organizations (company, team project) as well as changes required. Previous researches scope from evaluating BIM maturity of an organization to BIM collaboration requirements but lack of proper tools and methods to analyze collaboration performances. This is especially true when it comes to evaluate the efficiency and collaboration performances of processes rather than systems or organizations. Thus this research aims to analyze systematically and comprehensively previous researches proposing diversified methods to evaluate BIM performances and collaboration. Furthermore it aims to suggest key indicators to evaluate collaboration performances of processes and project organizations. This research may contribute to better understanding of collaboration performances within organizations using BIM and further development of evaluation method for analyzing BIM design project.

  • PDF

반려견에 초점을 맞춰 추출하는 영상 기반의 행동 탐지 시스템 (Dog Activities Recognition System using Dog-centered Cropped Images)

  • 오스만;이종욱;박대희;정용화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.615-617
    • /
    • 2023
  • In recent years, the growing popularity of dogs due to the benefits they bring their owners has contributed to the increase of the number of dogs raised. For owners, it is their responsibility to ensure their dogs' health and safety. However, it is challenging for them to continuously monitor their dogs' activities, which are important to understand and guarantee their wellbeing. In this work, we introduce a camera-based monitoring system to help owners automatically monitor their dogs' activities. The system receives sequences of RGB images and uses YOLOv7 to detect the dog presence, and then applies post-processing to perform dog-centered image cropping on each input sequence. The optical flow is extracted from each sequence, and both sequences of RGB and flow are input to a two-stream EfficientNet to extract their respective features. Finally, the features are concatenated, and a bi-directional LSTM is utilized to retrieve temporal features and recognize the activity. The experiments prove that our system achieves a good performance with the F-1 score exceeding 0.90 for all activities and reaching 0.963 on average.

Hot Spot Detection of Thermal Infrared Image of Photovoltaic Power Station Based on Multi-Task Fusion

  • Xu Han;Xianhao Wang;Chong Chen;Gong Li;Changhao Piao
    • Journal of Information Processing Systems
    • /
    • 제19권6호
    • /
    • pp.791-802
    • /
    • 2023
  • The manual inspection of photovoltaic (PV) panels to meet the requirements of inspection work for large-scale PV power plants is challenging. We present a hot spot detection and positioning method to detect hot spots in batches and locate their latitudes and longitudes. First, a network based on the YOLOv3 architecture was utilized to identify hot spots. The innovation is to modify the RU_1 unit in the YOLOv3 model for hot spot detection in the far field of view and add a neural network residual unit for fusion. In addition, because of the misidentification problem in the infrared images of the solar PV panels, the DeepLab v3+ model was adopted to segment the PV panels to filter out the misidentification caused by bright spots on the ground. Finally, the latitude and longitude of the hot spot are calculated according to the geometric positioning method utilizing known information such as the drone's yaw angle, shooting height, and lens field-of-view. The experimental results indicate that the hot spot recognition rate accuracy is above 98%. When keeping the drone 25 m off the ground, the hot spot positioning error is at the decimeter level.

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

A Grey Wolf Optimized- Stacked Ensemble Approach for Nitrate Contamination Prediction in Cauvery Delta

  • Kalaivanan K;Vellingiri J
    • 자원환경지질
    • /
    • 제57권3호
    • /
    • pp.329-342
    • /
    • 2024
  • The exponential increase in nitrate pollution of river water poses an immediate threat to public health and the environment. This contamination is primarily due to various human activities, which include the overuse of nitrogenous fertilizers in agriculture and the discharge of nitrate-rich industrial effluents into rivers. As a result, the accurate prediction and identification of contaminated areas has become a crucial and challenging task for researchers. To solve these problems, this work leads to the prediction of nitrate contamination using machine learning approaches. This paper presents a novel approach known as Grey Wolf Optimizer (GWO) based on the Stacked Ensemble approach for predicting nitrate pollution in the Cauvery Delta region of Tamilnadu, India. The proposed method is evaluated using a Cauvery River dataset from the Tamilnadu Pollution Control Board. The proposed method shows excellent performance, achieving an accuracy of 93.31%, a precision of 93%, a sensitivity of 97.53%, a specificity of 94.28%, an F1-score of 95.23%, and an ROC score of 95%. These impressive results underline the demonstration of the proposed method in accurately predicting nitrate pollution in river water and ultimately help to make informed decisions to tackle these critical environmental problems.

Knowledge Representation Using Fuzzy Ontologies: A Survey

  • V.Manikandabalaji;R.Sivakumar
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.199-203
    • /
    • 2023
  • In recent decades, the growth of communication technology has resulted in an explosion of data-related information. Ontology perception is being used as a growing requirement to integrate data and unique functionalities. Ontologies are not only critical for transforming the traditional web into the semantic web but also for the development of intelligent applications that use semantic enrichment and machine learning to transform data into smart data. To address these unclear facts, several researchers have been focused on expanding ontologies and semantic web technologies. Due to the lack of clear-cut limitations, ontologies would not suffice to deliver uncertain information among domain ideas, conceptual formalism supplied by traditional. To deal with this ambiguity, it is suggested that fuzzy ontologies should be used. It employs Ontology to introduce fuzzy logical policies for ambiguous area concepts such as darkness, heat, thickness, creaminess, and so on in a device-readable and compatible format. This survey efforts to provide a brief and conveniently understandable study of the research directions taken in the domain of ontology to deal with fuzzy information; reconcile various definitions observed in scientific literature, and identify some of the domain's future research-challenging scenarios. This work is hoping that this evaluation can be treasured by fuzzy ontology scholars. This paper concludes by the way of reviewing present research and stating research gaps for buddy researchers.

A Study on the Convergence of Tradition and Modernity in the Great Mosque of Algiers in Algeria

  • Han Yeol Baek
    • Architectural research
    • /
    • 제26권3호
    • /
    • pp.73-82
    • /
    • 2024
  • This study examined the political, social, and historical characteristics of the Great Mosque of Algiers, alongside its functional, spatial, and symbolic aspects. Generally, mosques are buildings where religious expression is profoundly intense, making it challenging to apply new types and designs. However, the Great Mosque of Algiers successfully inherits traditional Islamic features while simultaneously embodying modernity at an international level. The results of the multifaceted analysis of the convergence of tradition and modernity in this contemporary architectural work are as follows: First, through research on Islamic architecture, the study identified the functional and spatial characteristics expressed in Islamic buildings. In particular, the study highlighted the features of the Külliye as a multi-use building complex and provided a detailed analysis of symbolic elements such as minarets, domes, ablution facilities, and mihrabs, which are strongly emphasized in mosques where religious features are prominently displayed. Second, the analysis of the Great Mosque of Algiers' architectural plan explored the inte-gration of tradition and modernity. Traditional elements are akin to the identity of the building and contribute to its overall value. Third, by examining the development process of the Great Mosque of Algiers project, the study analyzed the international cooperation required in the modern era, understanding the hybrid nature of this architectural project.

LEA 코드를 위한 코드 스멜 관점에서 메트릭 접근 (Metrics Approach in aspect of Code Smell for LEA Code)

  • 홍진근
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권4호
    • /
    • pp.49-55
    • /
    • 2024
  • 코드 스멜은 Kent Beck에 의해 사용된 개념으로, 잠재적인 품질 문제를 나타내며 리팩토링의 필요성을 제시한다. 본 논문은 LEA 코드베이스에서 코드 스멜을 평가하며, 분류와 관련된 메트릭에 중점을 둔다. 연구에서는 LEA_core.c와 LEA.cpp를 분석하여 코드 품질과 복잡성의 차이를 강조한다. 또한 연구에서는 LOC, NOM, NOA, CYCLO, MAXNESTING, FANOUT와 같은 메트릭을 사용하여 크기, 복잡성, 결합도, 캡슐화, 상속, 응집도를 평가한다. 연구 결과에서는 LEA_core.c가 LEA.cpp에 비해 더 복잡하고 유지보수가 어려운 것으로 나타났다. 우리는 향후 연구에서 실시간 코드 스멜 탐지 및 리팩토링 제안을 위한 자동화 도구를 개발할 것이다.

A Computationally Effective Remote Health Monitoring Framework using AGTO-MLRC Models for CVD Diagnosis

  • Menda Ebraheem;Aravind Kumar Kondaji;Y Butchi Raju;N Bhupesh Kumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2512-2545
    • /
    • 2024
  • One of the biggest challenges for the medical professionals is spotting cardiovascular issues in the earliest stages. Around the world, Cardiovascular Diseases (CVD) are a major cause of death for almost 18 million people each year. Heart disease is therefore a serious concern that needs to be treated. The numerous elements that affect health, such as excessive blood pressure, elevated cholesterol, aberrant pulse rate, and many other factors, might make it challenging to detect heart disease. Consequently, early disease detection and the development of effective treatments can benefit greatly from the field of artificial intelligence. The purpose of this work is to develop a new IoT based healthcare monitoring framework for the prediction of CVD using machine learning algorithm. Here, the data preprocessing has been performed to create the normalized dataset for improving classification. Then, an Artificial Gorilla Troop Optimization (AGTO) algorithm is deployed to choose the most pertinent features from the normalized dataset. Moreover, the Multi-Linear Regression Classification (MLRC) model is also implemented for accurately categorizing the medical information as whether healthy or CVD affected. The results of the proposed AGTO-MLRC mechanism is validated and compared using the popular benchmarking datasets.