• Title/Summary/Keyword: Challenging behavior

Search Result 205, Processing Time 0.024 seconds

Experimental and Measurement Methods for the Small-Scale Model Testing of Lateral and Torsional Stability

  • Lee, Jong-Han;Park, Yong Myung;Jung, Chi-Young;Kim, Jae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.377-389
    • /
    • 2017
  • Tests of the lateral and torsional stability are quite sensitive to the experimental conditions, such as support conditions and loading system. Controlling all of these conditions in a full-size test is a very challenging task. Therefore, in this paper, an experimental measurement method that can control the experimental conditions using a small-scale model was proposed to evaluate the lateral and torsional stability of beams. For this, a loading system was provided to maintain the vertical direction of the load applied to the beam, and a support frame was produced to satisfy the in-plane and out-of-plane support conditions. The experimental method using a small-scale model was applied successively to the lateral and torsional behavior and stability of I-shaped beams. The proposed experimental methods, which effectively accommodate the changes in the geometry and length of the beam, could contribute to further experimental studies regarding the lateral and torsional stability of flexural members.

FEM investigation of SFRCs using a substepping integration of constitutive equations

  • Golpasand, Gholamreza B.;Farzam, Masood;Shishvan, Siamak S.
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.181-192
    • /
    • 2020
  • Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.

Uniaxial tensile test integrated design considering mould-fixture for UHPC

  • Zhang, Xiaochen;Shen, Chao;Zhang, Xuesen;Wu, Xiangguo;Faqiang, Qiu;Mitobaba, Josue G.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.281-295
    • /
    • 2022
  • Tensile property is one of the excellent properties of ultra-high performance concrete (UHPC), and uniaxial tensile test is an important and challenging mechanical performance test of UHPC. Traditional uniaxial tensile tests of concrete materials have inherent defects such as initial eccentricity, which often lead to cracks and failure in non-test zone, and affect the testing accuracy of tensile properties of materials. In this paper, an original integrated design scheme of mould and end fixture is proposed, which achieves seamless matching between the tension end of specimen and the test fixture, and minimizes the cumulative eccentricity caused by the difference in the matching between the tension end of specimen and the local stress concentration at the end. The stress analysis and optimization design are carried out by finite element method. The curve transition in the end of specimen is preferred compared to straight line transition. The rationality of the new integrated design is verified by uniaxial tensile test of strain hardening UHPC, in which the whole stress-strain curve was measured, including the elastic behavior before cracking,strain hardening behavior after cracking and strain softening behavior.

Assessing interfacial fracture in orthotropic materials: Implementing the RIS concept with considering the T-stress term under mixed-mode I/II

  • Zahra Khaji;Mahdi Fakoor
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.237-247
    • /
    • 2024
  • Research on interfacial crack formation in orthotropic bi-materials has experienced a notable increase in recent years, driven by growing concerns about structural integrity and reliability. The existence of a crack at the interface of bi-materials has a substantial impact on mechanical strength and can ultimately lead to fracture. The primary objective of this article is to introduce a comprehensive analytical model and establish stress relationships for investigating interfacial crack between two non-identical orthotropic materials with desired crack-fiber angles. In this paper, we present the application of the Interfacial Maximum Tangential Stress (IMTS) criterion, in combination with the Reinforcement Isotropic Solid (RIS) model, to investigate the behavior of interfacial cracks in orthotropic bi-materials under mixed-mode I/II loading conditions. We analytically characterize the stress state at the interfacial crack tip using both Stress Intensity Factors (SIFs) and the T-stress term. Orthotropic materials, due to their anisotropic nature, can exhibit complex crack tip stress fields, making it challenging to predict crack initiation behavior. The secondary objective of this study is to employ the IMTS criterion to predict the crack initiation angle and explore the notable impact of the T-stress term on fracture behavior. Furthermore, we validate the effectiveness of our approach in evaluating Fracture Limit Curves (FLCs) for interfacial cracks in orthotropic bi-materials by comparing our FLCs with relevant experimental data from existing literature.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Temperature Control of a CSTR using a Nonlinear PID Controller (비선형 PID 제어기를 사용한 CSTR의 온도 제어)

  • Lee, Joo-Yeon;So, Gun-Baek;Lee, Yun-Hyung;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.482-489
    • /
    • 2015
  • CSTR (Continuous Stirred Tank Reactor) which plays a key role in the chemical plants exhibits highly nonlinear behavior as well as time-varying behavior during operation. The control of CSTRs in the whole operating range has been a challenging problem to control engineers. So, a variety of feedback control forms and their tuning methods have been implemented to guarantee the satisfactory performance. This paper presents a scheme of designing a nonlinear PID controller incorporating with a GA (Genetic Algorithm) for the temperature control of a CSTR. The gains of the NPID controller are composed of easily implementable nonlinear functions based on the error and/or the error rate and its parameters are tuned using a GA by minimizing the ITAE (Integral of Absolute Error). Simulation works for reference tracking and disturbance rejecting performances and robustness to parameter changes show the feasibility of the proposed method.

SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR

  • Park, Jong-Hwa;Kim, Dong-Ha;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.535-550
    • /
    • 2006
  • The objectives of this paper are twofold to summarize the new findings and confirmed results from the Phebus FPT-1 experimental data and to report useful information to MELCOR users regarding the better use of MELCOR. For the core damage behavior, the early stage of a melt progression was predicted well; however, the late phase models, concerned with fuel dissolution, oxide cladding failure, fuel slumping, rubble debris heat up, effects of burn-up fuel, and so on, still showed limitations in MELCOR. For the fission product behavior, the comparison showed unexpected phenomena, various limitations, unresolved issues, and even absence of models. The issues summarized in this study have revealed the main areas where our endeavors need to be intensified in order to improve our understanding of severe accident phenomena. From the analysis of the Phebus FPT-1 test results, not only new core damage features, such as foaming or core expansion, but also possible new fission product release patterns due to effects from a high burn-up fuel have raised alternative challenging phenomena that should be solved in the next severe accident research phase.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

A Generous Cooperative Routing Protocol for Vehicle-to-Vehicle Networks

  • Li, Xiaohui;Wang, Junfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5322-5342
    • /
    • 2016
  • In vehicle-to-vehicle (V2V) networks, where selfishness degrades node activity, countermeasures for collaboration enforcement must be provided to enable application of a sage and efficient network environment. Because vehicular networks feature both high mobility and various topologies, selfish behavior judgment and establishment of a stable routing protocol become intensely challenging. In this paper, a two-phase-based generous cooperative routing protocol (called GEC) is presented for V2V networks to provide resistance to selfishness. To detect selfish behaving vehicles, a packet forwarding watchdog and an average connection rate based on the multipath weight method are used, where evidence is gathered from different watchdogs. Then, multihop relay decisions are made using a generous cooperative algorithm based on game theory. Finally, through buffering of the multiple end-to-end paths and judicious choice of optimal cooperative routes, route maintenance phase is capable of dealing with congestion and rapidly exchanging traffic. Specifically, it is proved that the GEC is theoretically subgame perfect. Simulation results show that for V2V networks with inherently selfish nodes, the proposed method isolates uncooperative vehicles and is capable of accommodating both the mobility and congestion circumstances by facilitating information dissemination and reducing end-to-end delay.

Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding

  • Huang, Shaonian;Huang, Dongjun;Khuhroa, Mansoor Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3769-3789
    • /
    • 2018
  • Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection of such groups is scientifically important for modeling social behavior, as well as practically useful for crowd video understanding. A social group refers to a cluster of members who tend to keep similar motion state for a sustained period of time. One of the main challenges of social group detection arises from the complex dynamic variations of crowd patterns. Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the existence of stationary groups in crowd scene. However, in this paper, we propose a novel unified framework for detecting social pedestrian groups in crowd videos, including dynamic and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and trajectory motion correlations between the atomic groups extracted from principal spatiotemporal-oriented energies. Furthermore, the probability distribution of static spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. Extensive experiments on challenging datasets demonstrate that our method can achieve superior results for social pedestrian group detection and crowd video classification.