• Title/Summary/Keyword: Challenge stress

Search Result 179, Processing Time 0.035 seconds

Oxidative Stress Induces Hypomethylation of LINE-1 and Hypermethylation of the RUNX3 Promoter in a Bladder Cancer Cell Line

  • Wongpaiboonwattana, Wikrom;Tosukhowong, Piyaratana;Dissayabutra, Thasinas;Mutirangura, Apiwat;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3773-3778
    • /
    • 2013
  • Increased oxidative stress and changes in DNA methylation are frequently detected in bladder cancer patients. We previously demonstrated a relationship between increased oxidative stress and hypomethylation of the transposable long-interspersed nuclear element-1 (LINE-1). Promoter hypermethylation of a tumor suppressor gene, runt-related transcription factor 3 (RUNX3), may also be associated with bladder cancer genesis. In this study, we investigated changes of DNA methylation in LINE-1 and RUNX3 promoter in a bladder cancer cell (UM-UC-3) under oxidative stress conditions, stimulated by challenge with $H_2O_2$ for 72 h. Cells were pretreated with an antioxidant, tocopheryl acetate for 1 h to attenuate oxidative stress. Methylation levels of LINE-1 and RUNX3 promoter were measured by combined bisulfite restriction analysis PCR and methylation-specific PCR, respectively. Levels of LINE-1 methylation were significantly decreased in $H_2O_2$-treated cells, and reestablished after pretreated with tocopheryl acetate. Methylation of RUNX3 promoter was significantly increased in cells exposed to $H_2O_2$. In tocopheryl acetate pretreated cells, it was markedly decreased. In conclusion, hypomethylation of LINE-1 and hypermethylation of RUNX3 promoter in bladder cancer cell line was experimentally induced by reactive oxygen species (ROS). The present findings support the hypothesis that oxidative stress promotes urothelial cell carcinogenesis through modulation of DNA methylation. Our data also imply that mechanistic pathways of ROS-induced alteration of DNA methylation in a repetitive DNA element and a gene promoter might differ.

An exploratory study of stress wave communication in concrete structures

  • Ji, Qing;Ho, Michael;Zheng, Rong;Ding, Zhi;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2015
  • Large concrete structures are prone to cracks and damages over time from human usage, weathers, and other environmental attacks such as flood, earthquakes, and hurricanes. The health of the concrete structures should be monitored regularly to ensure safety. A reliable method of real time communications can facilitate more frequent structural health monitoring (SHM) updates from hard to reach positions, enabling crack detections of embedded concrete structures as they occur to avoid catastrophic failures. By implementing an unconventional mode of communication that utilizes guided stress waves traveling along the concrete structure itself, we may be able to free structural health monitoring from costly (re-)installation of communication wires. In stress-wave communications, piezoelectric transducers can act as actuators and sensors to send and receive modulated signals carrying concrete status information. The new generation of lead zirconate titanate (PZT) based smart aggregates cause multipath propagation in the homogeneous concrete channel, which presents both an opportunity and a challenge for multiple sensors communication. We propose a time reversal based pulse position modulation (TR-PPM) communication for stress wave communication within the concrete structure to combat multipath channel dispersion. Experimental results demonstrate successful transmission and recovery of TR-PPM using stress waves. Compared with PPM, we can achieve higher data rate and longer link distance via TR-PPM. Furthermore, TR-PPM remains effective under low signal-to-noise (SNR) ratio. This work also lays the foundation for implementing multiple-input multiple-output (MIMO) stress wave communication networks in concrete channels.

Deformation and permeability evolution of coal during axial stress cyclic loading and unloading: An experimental study

  • Wang, Kai;Guo, Yangyang;Xu, Hao;Dong, Huzi;Du, Feng;Huang, Qiming
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.519-529
    • /
    • 2021
  • In coal mining activities, the abutment stress of the coal has to undergo cyclic loading and unloading, affecting the strength and seepage characteristics of coal; additionally, it can cause dynamic disasters, posing a major challenge for the safety of coal mine production. To improve the understanding of the dynamic disaster mechanism of gas outburst and rock burst coupling, triaxial devices are applied to axial pressure cyclic loading-unloading tests under different axial stress peaks and different pore pressures. The existing empirical formula is use to perform a non-linear regression fitting on the relationship between stress and permeability, and the damage rate of permeability is introduced to analyze the change in permeability. The results show that the permeability curve obtained had "memory", and the peak stress was lower than the conventional loading path. The permeability curve and the volume strain curve show a clear symmetrical relationship, being the former in the form of a negative power function. Owing to the influence of irreversible deformation, the permeability difference and the damage of permeability mainly occur in the initial stage of loading-unloading, and both decrease as the number of cycles of loading-unloading increase. At the end of the first cycle and the second cycle, the permeability decreased in the range of 5.777 - 8.421 % and 4.311-8.713 %, respectively. The permeability decreases with an increase in the axial stress peak, and the damage rate shows the opposite trend. Under the same conditions, the permeability of methane is always lower than that of helium, and it shows a V-shape change trend with increasing methane pressures, and the permeability of the specimen was 3 MPa > 1 MPa > 2 MPa.

Oxidative Stress in Spermatozoa during Boar Semen Storage (돼지 정액을 저장하는 동안 정자에 미치는 산화스트레스)

  • Seunghyung Lee
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.586-592
    • /
    • 2023
  • Oxidative stress is a critical factor affecting the quality and viability of sperm during boar semen storage. Oxidative stress is also a significant concern during the process of freezing semen. The process of semen storage involves exposing the sperm to various stressors, including temperature changes, cryoprotectants, and extended periods of incubation. In addition, oxidative stress can lead to the production of reactive oxygen species (ROS) within the sperm, resulting in oxidative damage to cellular components, such as lipids, proteins, and DNA. Striking a balance between ROS production and the antioxidant defense system is crucial for maintaining sperm viability and functionality during semen storage. Moreover, the prolonged storage of boar semen leads to an increase in ROS levels, which can impair sperm motility, membrane integrity, and DNA integrity. ROS-induced lipid peroxidation affects the fluidity and stability of sperm membranes, leading to decreased sperm motility. Moreover, oxidative damage to the DNA can result in DNA fragmentation, compromising the genetic integrity of the sperm. In conclusion, oxidative stress is a significant challenge in maintaining sperm quality during boar semen storage. Understanding the mechanisms underlying oxidative stress and their impacts on sperm function is crucial for developing effective strategies to minimize oxidative damage and improve sperm storage outcomes.

The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

  • Jun Ho Lee;Tae-Jin Kim;Jie Wan Kim;Jeong Seon Yoon;Hyuk Soon Kim;Kyung-Mi Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.242-248
    • /
    • 2016
  • Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis.

Effects of Acanthopanax senticosus Polysaccharide Supplementation on Growth Performance, Immunity, Blood Parameters and Expression of Pro-inflammatory Cytokines Genes in Challenged Weaned Piglets

  • Han, Jie;Bian, Lianquan;Liu, Xianjun;Zhang, Fei;Zhang, Yiran;Yu, Ning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1035-1043
    • /
    • 2014
  • To investigate the effect of dietary Acanthopanax senticosus polysaccharide (ASPS) on growth performance, immunity, blood parameters and mRNA expression of pro-inflammatory cytokines in immunologically challenged piglets, an experiment employing $2{\times}2$ factorial arrangement concerning dietary ASPS treatment (0 or 800 mg/kg) and immunological challenge (lipopolysaccharide [LPS] or saline injection) was conducted with 64 crossbred piglets (weaned at 28 d of age, average initial body weight of $7.25{\pm}0.21kg$) assigned to two dietary ASPS treatments with 8 replicates of 4 pigs each. Half of the piglets of per dietary treatment were injected with LPS or saline on d 14. Blood samples were obtained at 3 h after immunological injection on d 14 and piglets were slaughtered to obtain spleen samples on d 21. Dietary ASPS did not affect average daily gain (ADG) (p = 0.634), average daily feed intake (ADFI) (p = 0.655), and gain:feed (p = 0.814) prior to LPS challenge. After LPS challenge, for LPS-challenged pigs those fed ASPS had higher ADG and ADFI than the non-supplemented group (p<0.05), and an interaction between $LPS{\times}ASPS$ was observed on the two indices (p<0.05). Dietary ASPS improved lymphocyte proliferation among saline-injected and LPS-injected pigs (p<0.05). Interaction between $LPS{\times}ASPS$ was also revealed on lymphocyte proliferation (p<0.05). Circulatory concentration of IgG was influenced neither by ASPS (p = 0.803) or LPS (p = 0.692), nor their interaction (p = 0.289). Plasma concentration and spleen mRNA expression of interleukin-1beta (IL-$1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-${\alpha}$ were induced to increase (p<0.05) by LPS challenge, in contrast, these indices were decreased by dietary ASPS (p<0.05), and interactions were found on these cytokines (p<0.05). For LPS-challenged pigs, dietary ASPS also reduced the circulating concentration and spleen mRNA expression of IL-$1{\beta}$, IL-6 as well as TNF-${\alpha}$ (p<0.05). The interaction between $LPS{\times}ASPS$ was also observed on the circulating concentration of insulin-like growth factor-I, ${\alpha}$-acid glycoprotein (${\alpha}$-AGP), nonesterified fatty acid, and glucose (p<0.05). The results of this study demonstrate that dietary ASPS can modulate the release of pro-inflammatory cytokines during immunological challenge, which might enable piglets to achieve better growth performance.

The Influence on the Information Security Stressor on Information Security Compliance Intention : Focusing on the Moderation of Authentic Leadership (정보보안 스트레서가 정보보안 준수 의도에 미치는 영향: 진성 리더십의 조절 효과 중심)

  • Hwang, In-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1101-1112
    • /
    • 2021
  • Organizations continue to increase investment in information security(IS) policies and technologies to prevent external intrusion and internal exposure to information assets. However, as the organization's regulations and behavioral requirements for strict IS policy increase, employees may induce negative behaviors through IS-related stress. The purpose of this study is to suggest the effects of challenge and hindrance stressors on IS compliance intentions and to confirm how authentic leadership moderates the positive and negative effects of stressors. We reflected employees of the organization who are applying IS policy to their work as a study target and applied a survey to obtain a sample for research hypothesis verification. As a result of analysis through structural equation modeling, challenge and hindrance stressors affected IS compliance intentions, and authentic leadership moderated the effects of stressors on compliance intention. Our research helps to establish insiders support strategies to achieve internal IS goals, because the results suggested stressor conditions and leaders' behavioral directions that influence employees IS compliance behavior.

Glycine alleviated diquat-induced hepatic injury via inhibiting ferroptosis in weaned piglets

  • Hua, Hongwei;Xu, Xiao;Tian, Wei;Li, Pei;Zhu, Huiling;Wang, Wenjun;Liu, Yulan;Xiao, Kan
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.938-947
    • /
    • 2022
  • Objective: The beneficial effects of glycine were tested in piglets with diquat-induced hepatic injury. Methods: Thirty-two piglets were assigned by a 2×2 factorial experimental design including glycine supplementation and diquat challenge. After 3 weeks of feeding with a basic diet or a 1% glycine supplemented diet, piglets were challenged with diquat or saline. After 1 week later, the piglets were slaughtered and samples were collected. Results: Our results indicated that glycine alleviated diquat induced morphological hepatic injury, decreased the activities of plasma alanine aminotransferase, aspartate aminotransferase and glutamyl transpeptidase in the piglets under diquat challenge, and increased total antioxidant capacity and antioxidative enzyme activity significantly. Adding glycine enhanced the concentrations of hepatic adenosine triphosphate and adenosine diphosphate. Transmission electron microscope observation showed that diquat induced clear hepatocytes ferroptosis and its effect could be alleviated by glycine to a certain degree. Moreover, glycine significantly affected mRNA and protein expression of ferroptosis-related signals in the liver. Conclusion: These results demonstrated that glycine attenuated liver damage via inhibiting ferroptosis.

Bacterial determinants involved in the induction of systemic resistance ana plant growth promotion in tobacco by Pseudomonas chlororaphis O6.

  • Han, Song-Hee;Cho, Baik-Ho;Kim, Young-Cheol
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.101.2-102
    • /
    • 2003
  • The ability of P. chlororaphis O6 to induce resistance to Erwinia carotovora subsp. carotovara SCCI and to promote growth in tobacco was demonstrated in microtiter assays on plants pre-inoculated at the root level with the bacteria before challenge with the leaf pathogen. To identify th bacterial determinants involved in induced systemic resistance and plant growth promotion, cell culture of O6 grown in King's medium B was fractionated with organic solvents and purified using various columns. in vivo and in vitro assays with samples from successive fractionation steps of the O6 supernatant led to the conclusion that antibacterial compounds were observed in aqueous layer, and to the isolation of fractions containing metabolites that retained most of the resistance-inducing activity (70:30, methanol:water) and the plant growth promotion (80:20 and 90:10, methanol:water) after ODS column chromatography. Although these molecules remain to be purified further and structurally characterized, its isolation is an addition to the range of determinants from plant growth-promoting rhizobacteria known to stimulate plant defence.

  • PDF

Experimental investigation of predicting rockburst using Bayesian model

  • Wang, Chunlai;Chuai, Xiaosheng;Shi, Feng;Gao, Ansen;Bao, Tiancai
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1153-1160
    • /
    • 2018
  • Rockbursts, catastrophic events involving the violent release of elastic energy stored in rock features, remain a worldwide challenge for geoengineering. Especially at deep-mining sites, rockbursts can occur in hard, high-stress, brittle rock zones, and the associated risk depends on such factors as mining activity and the stress on surrounding rocks. Rockbursts are often sudden and destructive, but there is still no unified standard for predicting them. Based on previous studies, a new Bayesian multi-index model was introduced to predict and evaluate rockbursts. In this method, the rock strength index, energy release index, and surrounding rock stress are the basic factors. Values from 18 rock samples were obtained, and the potential rockburst risks were evaluated. The rockburst tendencies of the samples were modelled using three existing methods. The results were compared with those obtained by the new Bayesian model, which was observed to predict rockbursts more effectively than the current methods.