• Title/Summary/Keyword: Challenge Stress

Search Result 185, Processing Time 0.025 seconds

Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine

  • Zamani, Mahdi;Maghrebi, Mohammad Javad;Moshizi, Sajad A.
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.595-616
    • /
    • 2016
  • Providing high starting torque and efficiency simultaneously is a significant challenge for vertical axis wind turbines (VAWTs). In this paper, a new approach is studied in order to modify VAWTs performance and cogging torque. In this approach, J-shaped profiles are exploited in the structure of blades by means of eliminating the pressure side of airfoil from the maximum thickness toward the trailing edge. This new profile is a new type of VAWT airfoil using the lift and drag forces, thereby yielding a better performance at low TSRs. To simulate the fluid flow of the VAWT along with J-shaped profiles originated from NACA0018 and NACA0030, a two-dimensional computational analysis is conducted. The Reynolds Averaged Navier-Stokes (RANS) equations are closed using the two-equation Shear Stress Transport (SST) turbulence model. The main objective of the study is to investigate the effects of J-shaped straight blade thickness on the performance characteristics of VAWT. The results obtained indicate that opting for the higher thickness in J-shaped profiles for the blade sections leads the performance and cogging torque of VAWT to enhance dramatically.

A Study on compressive behavior of laminated plates with initial delamination (박리가 발생된 적층평판의 압축 거동에 관한 연구)

  • Lee, Nam-Ju;Jo, Yong-Oug
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.167-174
    • /
    • 2016
  • Recently laminated plates like composite materials has been used in a various field to grow the specific strength of the composition. However, delamination area caused by barely visible impact damage has potential risk that it can raise buckling of the delaminated plate. Because it can interrupt compressive behavior of laminated plates and reduce their strength, the whole structure can't be constituted by these materials. Many studies assume that behavior of the delaminated plate which is in lamanated plates equals theoretical buckling but their actual motion doesn't coincide because of initial imperfections of materials like deflection, residual stress, eccentricity and so on. In this paper, we change laminated plates with initial delamination into a beam of rectangular cross section with the initial crack and analyze compressive behavior according to initial imperfections through finite element method(FEM). Consequently analysis results show that behavior of laminated plates involving delamination differs from ideal buckling of the delaminated plate in actual conditions and we can predict its motion through imperfections relationship.

  • PDF

Detection of a Crack in Beams by Eigen Value Analysis (고유치 해석을 이용한 보의 크랙 탐색)

  • Lee, Hee-Su;Lee, Ki-Hoon;Cho, Jae-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.195-202
    • /
    • 2016
  • In this paper, crack detection method using eigen value analysis is presented. Three methods are used: theoretical analysis, finite element method with the cracked beam elements and finite element method with three dimensional continuum elements. Finite element formulation of the cracked beam element is introduced. Additional term about stress intensity factor based on fracture mechanics theory is added to flexibility matrix of original beam to model the crack. As using calculated stiffness matrix of cracked beam element and mass matrix, natural frequencies are calculated by eigen value analysis. In the case of using continuum elements, the natural frequencies could be calculated by using EDISON CASAD solver. Several cases of crack are simulated to obtain natural frequencies corresponding the crack. The surface of natural frequency is plotted as changing with crack location and depth. Inverse analysis method is used to find crack location and depth from the natural frequencies of experimental data, which are referred by another papers. Predicted results are similar with the true crack location and depth.

  • PDF

Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests

  • Panaghi, Kamran;Golshani, Aliakbar;Takemura, Takato
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.793-813
    • /
    • 2015
  • Characterization of discontinuous media is an endeavor that poses great challenge to engineers in practice. Since the inherent defects in cracked domains can substantially influence material resistance and govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks along with their impact on the mechanical properties of the intact material. In the present study, stress-strain results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the evaluation of fractured domain stability. It was found that the formulations proposed earlier could satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and compared to the results of the current study. It is concluded that the geometrical parameters calculated using mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked domain.

An Urgent Problem and Challenge of Rural Healing Tourism (농촌 치유관광의 당면과제)

  • Kim, Kyung-Hee;Hwang, Dae-Yong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 2019
  • Recently rural healing tourism has been attracting tourists' interest in relieving mental stress and restoring physical daily life with nature-friendly experience. The purpose of this study is to explore the urgent problems and challenges of rural healing tourism by conducting focus group interview(FGI) with experts. Fourteen experts were interviewed with a semi-structured questionnaire. From the interview data, six themes were identified for direction of healing tourism development. The results of the study are as follows; The area of rural healing tourism can be explained within the framework of health tourism. As for the difference between rural tourism and healing tourism, rural tourism is expected to enhance physical and mental relaxation, daily restoration, and health promotion if rural tourism expects the understanding and experience of agricultural and rural life, and educational effect. The core components of rural healing tourism were operators' expertise, program with rurality, ecological environment, and storytelling. The findings of this paper implicate the underlying dimension of rural healing tourism from a experts' perspective.

Reconsidering Robinson Crusoe as Homo Economicus ("호모 이코노미쿠스"로서의 로빈슨 크루소 재고)

  • Rhee, Suk Koo
    • Journal of English Language & Literature
    • /
    • v.64 no.4
    • /
    • pp.629-649
    • /
    • 2018
  • To date, one of the prevailing criticisms of Daniel Defoe's Robinson Crusoe has seen the adventure novel as a celebration of the rise of mercantile capitalism and the beginnings of colonialism. From this point of view, the Englishman has often been interpreted as an early embodiment of the concept of the sovereign economic subject. Prominent social critics who took up this interpretation have included Karl Marx, Max Weber, and Jean-Jacques Rousseau. Within literary studies proper, the work of Ian Watt offered perhaps the earliest version of this point of view of the novel. Influenced by both Weber and Rousseau, Ian Watt argued that Defoe's wandering protagonist embodies the rise of economic individualism. More recent criticism has tended to challenge this dominant interpretation by laying greater stress on such countervailing factors as Crusoe's mental uncertainty and inner conflict. Drawing inspiration from Fredric Jameson's diagnosis of the ills of late capitalism, this paper analyzes the ways in which Defoe's hero, rather than championing modern rationality, can in fact be seen as suffering from many forms of emotional psychosis. Robinson Crusoe can, after all, be better viewed as a contradictory multi-layered text that, despite its outward valorization of economic individualism, portrays its hero as a victim of negative capitalistic forces, a hero driven by his desire to possess but haunted by a fear of loss, a hero who flaunts inflated feelings of self-worth even as he reveals deflated notions of material insecurity and mental persecution.

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang;Cheng, Yulong;Ke, Xinyou;Ren, Guofeng;Zhu, Fuliang
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.285-295
    • /
    • 2021
  • The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

Forming Simulation of EV Motor Hairpin by Implementing Mechanical Properties of Polymer Coated Copper Wire (고분자 필름 및 구리선 이종 물성을 고려한 EV모터용 헤어핀 성형 공정 해석)

  • D. C. Kim;Y. J. Lim;M. Baek;M. G. Lee;I. S. Oh
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • As electric vehicles (EV) have increasingly replaced the conventional vehicles with internal combustion engines (ICE), most of automotive makers are actively devoting to the technology development of EV parts. Accordingly, the manufacturing process for power source has been also shifting from engine/transmission to EV motor/reducer system. However, lack of experience in developing the EV motor still remains as a technical challenge. In this paper, we employed the forming simulation based on finite element modeling to solve this problem. In particular, in order to increase the accuracy of the forming simulation, we introduced the elastic-plastic constitutive model parameters for polymer-copper hybrid wire by investigating the individual strain-stress curves, and elastic modulus of polymer and copper. Then, the reliability of modeling procedure was confirmed by comparing the simulated results with experiments. Finally, the identified mechanical properties and finite element modeling were applied to a hairpin forming process, which involves multiple deformation paths such as bending, pressing, widening, and twisting. The proposed numerical approach can replace common experience or experiment based trials by reducing production time and cost in the future.

Influence of climate change on crop water requirements to improve water management and maize crop productivity

  • Adeola, Adeyemi Khalid;Adelodun, Bashir;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.126-126
    • /
    • 2022
  • Climate change has continued to impact meteorological factors like rainfall in many countries including Nigeria. Thus, altering the rainfall patterns which subsequently affect the crop yield. Maize is an important cereal grown in northern Nigeria, along with sorghum, rice, and millet. Due to the challenge of water scarcity during the dry season, it has become critical to design appropriate strategies for planning, developing, and management of the limited available water resources to increase the maize yield. This study, therefore, determines the quantity of water required to produce maize from planting to harvesting and the impact of drought on maize during different growth stages in the region. Rainfall data from six rain gauge stations for a period of 36 years (1979-2014) was considered for the analysis. The standardized precipitation and evapotranspiration index (SPEI) is used to evaluate the severity of drought. Using the CROPWAT model, the evapotranspiration was calculated using the Penman-Monteith method, while the crop water requirements (CWRs) and irrigation scheduling for the maize crop was also determined. Irrigation was considered for 100% of critical soil moisture loss. At different phases of maize crop growth, the model predicted daily and monthly crop water requirements. The crop water requirement was found to be 319.0 mm and the irrigation requirement was 15.5 mm. The CROPWAT 8.0 model adequately estimated the yield reduction caused by water stress and climatic impacts, which makes this model appropriate for determining the crop water requirements, irrigation planning, and management.

  • PDF

Reliability Evaluation of Resilient Safety Culture Using Fault Tree Analysis

  • Garg, Arun;Tonmoy, Fahim;Mohamed, Sherif
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.303-312
    • /
    • 2020
  • Safety culture is a collection of the beliefs, perceptions and values that employees share in relation to risks within an organisation. On the other hand, a resilient safety culture (RSC) means a culture with readiness of the organisation to respond effectively under stress, bounce back from shocks and continuously learn from them. RSC helps organisations to protect their interest which can be attributed to behavioural, psychological and managerial capabilities of the organization. Quantification of the degree of resilience in an organisation's safety culture can provide insights about the strong and weak links of the organisation's overall health and safety situation by identifying potential causes of system or sub-system failure. One of the major challenges of quantification of RSC is that the attributes that determine RSC need to be measured through constructs and indicators which are complex and often interrelated. In this paper, we address this challenge by applying a fault tree analysis (FTA) technique which can help analyse complex and interrelated constructs and indicators. The fault tree model of RSC is used to evaluate resilience levels of two organisations with remote and urban locations in order to demonstrate the failure path of the weak links in the RSC model.

  • PDF