• Title/Summary/Keyword: Chalcogenide Glass

Search Result 53, Processing Time 0.02 seconds

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF

Terahertz Time Domain Spectroscopy, T-Ray Imaging and Wireless Data Transfer Technologies

  • Paek, Mun-Cheol;Kwak, Min-Hwan;Kang, Seung-Beom;Kim, Sung-Il;Ryu, Han-Cheol;Choi, Sang-Kuk;Jeong, Se-Young;Kang, Dae-Won;Jun, Dong-Suk;Kang, Kwang-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.158-165
    • /
    • 2010
  • This study reviewed terahertz technologies of time domain spectroscopy, T-ray imaging, and high rate wireless data transfer. The main topics of the terahertz research area were investigation of materials and package modules for terahertz wave generation and detection, and setup of the terahertz system for time domain spectroscopy(TDS), T-ray imaging and sub-THz wireless communication. In addition to Poly-GaAs film as a photoconductive switching antenna material, a table-top scale for the THz-TDS/imaging system and terahertz continuous wave(CW) generation systems for sub-THz data transfer and narrow band T-ray imaging were designed. Dielectric properties of ferroelectric BSTO($Ba_xSr_{1-x}TiO_3$) films and chalcogenide glass systems were characterized with the THz-TDS system at the THz frequency range. Package modules for terahertz wave transmitter/receiver(Tx/Rx) photoconductive antenna were developed.

Evaluation on the Phase-Change Properties in W-doped Ge8Sb2Te11 Thin Films for Amorphous-to-Crystalline Reversible Phase-Change Device (비정질-결정질 가역적 상변환 소자용 Ge8Sb2Te11 박막의 W 도핑에 따른 상변환 특성 평가)

  • Park, Cheol-Jin;Yeo, Jong-Bin;Kong, Heon;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.133-138
    • /
    • 2017
  • We evaluated the structural, electrical and optical properties of tungsten (W)-doped $Ge_8Sb_2Te_{11}$ thin films. In a previous work, GeSbTe alloys were doped with different materials in an attempt to improve thermal stability. 200 mm thick $Ge_8Sb_2Te_{11}$ and W-doped $Ge_8Sb_2Te_{11}$ films were deposited on p-type Si (100) and glass substrates using a magnetron co-sputtering system at room temperature. The fabricated films were annealed in a furnace in the $0{\sim}400^{\circ}C$ temperature range. The structural properties were analyzed using X-ray diffraction (X'pert PRO, Phillips). The results showed increased crystallization temperature ($T_c$) leading to thermal stability in the amorphous state. The optical properties were analyzed using an UV-Vis-IR spectrophotometer (Shimadzu, U-3501, range : 300~3,000 nm). The results showed an increase in the crystalline material optical energy band gap ($E_{op}$) and an increase in the $E_{op}$ difference (${\Delta}E_{op}$). This is a good effect to reduce memory device noise. The electrical properties were analyzed using a 4-point probe (CNT-series). This showed increased sheet resistance ($R_s$), which reduces programming current in the memory device.