• Title/Summary/Keyword: Chain-based routing

Search Result 40, Processing Time 0.028 seconds

An Energy Efficient Chain-based Routing Protocol for Wireless Sensor Networks

  • Sheikhpour, Razieh;Jabbehdari, Sam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1357-1378
    • /
    • 2013
  • Energy constraint of wireless sensor networks makes energy saving and prolonging the network lifetime become the most important goals of routing protocols. In this paper, we propose an Energy Efficient Chain-based Routing Protocol (EECRP) for wireless sensor networks to minimize energy consumption and transmission delay. EECRP organizes sensor nodes into a set of horizontal chains and a vertical chain. Chain heads are elected based on the residual energy of nodes and distance from the header of upper level. In each horizontal chain, sensor nodes transmit their data to their own chain head based on chain routing mechanism. EECRP also adopts a chain-based data transmission mechanism for sending data packets from the chain heads to the base station. The simulation results show that EECRP outperforms LEACH, PEGASIS and ECCP in terms of network lifetime, energy consumption, number of data messages received at the base station, transmission delay and especially energy${\times}$delay metric.

Optimal Routing and Uncertainty Processing using Geographical Information for e-Logistics Chain Execution

  • Kim, Jin Suk;Ryu, Keun Ho
    • Management Science and Financial Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-28
    • /
    • 2004
  • The integrated supply chain of business partners for e-Commerce in cyber space is defined as Logistics Chain if the cooperative activities are logistics-related. Logistics Chain could be managed effectively and efficiently by cooperative technologies of logistics chain execution. In this paper, we propose a routing and scheduling algorithm based on the Tabu search by adding geographical information into existing constraint for pick-up and delivery process to minimize service time and cost in logistics chain. And, we also consider an uncertainty processing for the tracing of moving object to control pick-up and delivery vehicles based on GPS/GIS/ITS. Uncertainty processing is required to minimize amount of telecommunication and database on vehicles tracing. Finally, we describe the Logistics Chain Execution (LCE) system to perform plan and control activities for postal logistics chain. To evaluate practical effects of the routing and scheduling system, we perform a pretest for the performance of the tabu search algorithm. And then we compare our result with the result of the pick-up and delivery routing plan generated manually by postmen.

Low Power Scan Chain Reordering Method with Limited Routing Congestion for Code-based Test Data Compression

  • Kim, Dooyoung;Ansari, M. Adil;Jung, Jihun;Park, Sungju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.582-594
    • /
    • 2016
  • Various test data compression techniques have been developed to reduce the test costs of system-on-a-chips. In this paper, a scan chain reordering algorithm for code-based test data compression techniques is proposed. Scan cells within an acceptable relocation distance are ranked to reduce the number of conflicts in all test patterns and rearranged by a positioning algorithm to minimize the routing overhead. The proposed method is demonstrated on ISCAS '89 benchmark circuits with their physical layout by using a 180 nm CMOS process library. Significant improvements are observed in compression ratio and test power consumption with minor routing overhead.

A Location-Routing Problem for Logistics Network Integrating Forward and Reverse Flow (역물류를 고려한 통합물류망에서의 입지:경로문제)

  • Na, Ho-Young;Lee, Sang-Heon
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.153-164
    • /
    • 2009
  • An effective management for reverse flows of products such as reuse, repair and disposal, has become an important issue for every aspect of business. In this paper, we study the Location-Routing Problem (LRP) in the multi-stage closed-loop supply chain network. The closed-loop supply chain in this study integrated both forward and reverse flows. In forward flow, a factory, Distribution Center (DC) and retailer are considered as usual. Additionally in reverse flow, we consider the Central Returns collection Center (CRC) and disposal facility. We propose a mixed integer programming model for the design of closed-loop supply chain integrating both forward and reverse flows. Since the LRP belongs to an NP-hard problem, we suggest a heuristic algorithm based on genetic algorithm. For some test problems, we found the optimal locations and routes by changing the numbers of retailers and facility candidates. Furthermore, we compare the efficiencies between open-loop and closed-loop supply chain networks. The results show that the closed-loop design is better than the open one in respect to the total routing distance and cost. This phenomenon enlarges the cut down effect on cost as an experimental space become larger.

Link-State Routing Security Mechanism based on Double Hash Chain (이중 해쉬체인에 기반을 둔 Link-State 라우팅 보안 메커니즘)

  • 유병익;임정미;유선영;박창섭
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.2
    • /
    • pp.31-40
    • /
    • 2003
  • The current security issue for the Internet is focused on the security for user data. On the other hand, the research on the security for routing protocols is not so active, considering the importance of its role for the harmonious and accurate operation of the Internet. In this paper, we investigate the security problems of the link-state routing protocol which has been employed in the Internet, and suggest a new authentication mechanism for routing messages which complements and extends the previous ones. For this purpose, a concept of dual hash chains is newly introduced, which is provably secure, and we explain how to provide both the integrity and source authentication service for routing messages based on the session hash chains.

Energy Efficient Routing Protocol Based on PEGASIS in WSN Environment (WSN 환경에서 PEGASIS 기반 에너지 효율적 라우팅 프로토콜)

  • Byoung-Choul Baek;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.579-586
    • /
    • 2023
  • A wireless sensor network (WSN) has limited battery power because it is used wirelessly using low-cost small sensors. Since the battery cannot be replaced, the lifespan of the sensor node is directly related to the lifespan of the battery, so power must be used efficiently to maximize the lifespan of the network. In this study, based on PEGASIS, a representative energy-efficient routing protocol, we propose a protocol that classifies layers according to the distance from the sink node and configures multiple chains rather than one chain. The proposed protocol can increase network lifespan by reducing the transmission distance between nodes to prevent unnecessary energy consumption.

Clustering Routing Algorithms In Wireless Sensor Networks: An Overview

  • Liu, Xuxun;Shi, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1735-1755
    • /
    • 2012
  • Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.

Cluster Head Chain Routing Protocol suitable for Wireless Sensor Networks in Nuclear Power Plants (원전 무선 센서 네트워크에 적합한 클러스터 헤드 체인 라우팅 프로토콜)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • Nuclear power plants have a lower cost of power generation, and they are more eco-friendly than other power generation plants. Also, we need to prepare nuclear plant accidents because of their severe damage. In the event of a safety accident, such as a radiation leak, by applying a wireless sensor network to a nuclear power plant, many sensor nodes can be used to monitor radiation and transmit information to an external base station to appropriately respond to the accident. However, applying a wireless sensor network to nuclear power plants requires routing protocols that consider the sensor network size and bypass obstacles such as plant buildings. In general, the hierarchical-based routing protocols are efficient in energy consumption. In this study, we look into the problems that may occur if hierarchical-based routing protocols are applied to nuclear power plants and propose improved routing protocols to solve these problems. Simulation results show that the proposed routing protocol is more effective in energy consumption than the existing LEACH protocol.

Digital Signature Model of Sensor Network Using Hash Chain (해쉬체인을 이용한 센서네트워크의 디지털서명 모델)

  • Kim, Young-Soo;Cho, Seon-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2459-2464
    • /
    • 2009
  • In sensor network there are no nodes or servers that are exclusively responsible for packet forwarding and routing. Instead, sensor nodes participating in network communications perform these activities. Thus, they are vulnerable to the alteration and forgery of message in the process of packet forwarding and routing. To solve this problem, a security to ensure authentication and integrity of routing and forwarding messages should be required. To do this, we propose the hash chain-based digital signature model where it takes less time to compute in generating and verifying the digital signature model, unlike he public key-based digital signature model, and verify if this model is proper by comparing computation times between tow models.

Pre-cluster HEAD Selection Scheme based on Node Distance in Chain-Based Protocol (체인기반 프로토콜에서 노드의 거리에 따른 예비 헤드노드 선출 방법)

  • Kim, Hyun-Duk;Choi, Won-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1273-1287
    • /
    • 2009
  • PEGASIS, a chain-based protocol, forms chains from sensor nodes so that each node transmits and receives from a neighbor. In this way, only one node (known as a HEAD) is selected from that chain to transmit to the sink. Although PEGASIS is able to balance the workload among all of the nodes by selecting the HEAD node in turn, a considerable amount of energy may be wasted when nodes which are far away from sink node act as the HEAD. In this study, DERP (Distance-based Energy-efficient Routing Protocol) is proposed to address this problem. DERP is a chain-based protocol that improves the greedy-algorithm in PEGASIS by taking into account the distance from the HEAD to the sink node. The main idea of DERP is to adopt a pre-HEAD (P-HD) to distribute the energy load evenly among sensor nodes. In addition, to scale DERP to a large network, it can be extended to a multi-hop clustering protocol by selecting a "relay node" according to the distance between the P-HD and SINK. Analysis and simulation studies of DERP show that it consumes up to 80% less energy, and has less of a transmission delay compared to PEGASIS.

  • PDF