• Title/Summary/Keyword: Chain scission

Search Result 59, Processing Time 0.026 seconds

The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation (이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계)

  • Lee, Jae S.;Kim, Bo-Young;Lee, Jae-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.

Property Enhancement of SiR-EPDM Blend Using Electron Beam Irradiation

  • Deepalaxmi, R.;Rajini, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.984-990
    • /
    • 2014
  • Polymers are the most commonly used di-electrics because of their reliability, availability, ease of fabrication and cost. The commercial and industrial demand for advanced polymeric materials which are capable of being used in harsh environment is need of the hour. The study of the effect of electron beam irradiation on polymeric materials is an area of rapidly increasing interest. This paper discusses the resultant beneficial effects of electron beam irradiation on the SiR-EPDM blend having 50:50 composition. The changes in mechanical and electrical properties of SiR-EPDM blend which are exposed to three different doses of electron beam radiation namely 5 Mrad, 15 Mrad and 25 Mrad are presented. The irradiated blends are analyzed for their electro-mechanical and physico chemical properties. The electrical changes induced by irradiation are investigated by arc resistance, surface resistivity and volume resistivity measurements as per ASTM standards. The mechanical changes are observed by the measurement of tensile strength and elongation at break. Physico chemical investigation has been done using the FTIR, in order to investigate the irradiation induced chemical changes.

A Consideration on Thermal Stability of the PVAc Latex Adhesive (PVAc 라텍스 접착제의 열적 안정성에 대한 고찰)

  • 권재범;이내우;설수덕
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.81-87
    • /
    • 2003
  • Latex polymers are widely used for adhesive, binder, paint etc. Especially the PVAc(Polyvinyl acetate) latex which manufactured by vinyl acetate and vinyl alcohol as protective colloid is a useful environmentally friendly adhesive. To increase useful property of PVAc latex, this study was carried out for checking thermal characteristics and physical condition of PVAc latex by DSC, FT-IR, Pyrolyzer GC-MS. The activation energies of thermal decomposition for 40, 48, 56, 64% solid content of PVAc latex were found as 28.1-36.0kcal/mol by Kissinger's method and 17.2-22.0kcal/mol by DSC method. Actually, reasonable solid content could be consiered as 56% because of activation energy and adhesive characteristics. According to the effect of protective colloid for 4, 10, 15, 20wt%, the activation energy shows same tendency to both method and in case of l5wt% has been found as the highest activation energy. The mechanism of thermal decomposition was mainly estimated by main chain scission, not by side group on FT-IR analysis. Main component of Pyrolzer GC-MS result were consisted of $CH_3COOH$, $CH_3$, $H_2O$ and light gases(CO, $CO_2$, $CH_4$ etc).

Physicochemical Properties and Antioxidant Effects of Fucoidans Degraded by Hydrogen Peroxide under Electron Beam at Various Irradiation Doses

  • Jeong, Gyeong-Won;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.322-327
    • /
    • 2022
  • Fucoidans were degraded by hydrogen peroxide under the electron beam (2.5 MeV) with various radiation doses (5 kGy, 10 kGy, 15 kGy, and 20 kGy) at room temperature. The degradation property was analyzed with a gel permeation chromatography (GPC-MALLS) method. An average molecular weight of fucoidan decreased from 99,956 at the irradiation dose of 0 kGy to 6,725 at the irradiation dose of 20 kGy. The solution viscosity of fucoidans showed a similar pattern to the molecular weight change. The number of chain breaks per molecule (N) increased with increasing the irradiation dose and concentration of hydrogen peroxide. The radiation yield of scission value markedly increased with increasing the irradiation dose up to 15 kGy. Also a 10% hydrogen peroxide concentration was more efficient than that of 5%. The structures of degraded fucoidan samples were studied with Fourier transform infrared spectroscopy (FT-IR). The results showed that the degradation process did not significantly change the chemical structure or the content of sulfate group. The sulfur content of each sample was determined with an Elemental Analyzer. With increasing the concentration of hydrogen peroxide, the ratios of sulfur/carbon, hydrogen/carbon, and nitrogen/carbon slightly decreased. The antioxidant activities of fucoidans were investigated based on hydroxyl radical scavenging activities. The ability of fucoidan to inhibit the hydroxyl radical scavenging activity was depended on its molecular weight.

Effects of a Crosslinking Agent and a Compatibilizer on the Mechanical and Rheological Properties of Waste PP and Waste Ground Rubber Tire Composites

  • Kim, Donghak;Kim, Seonggil;Lee, Minji;Lee, Chanhee;Lee, Horyong;Lee, Seongwoo;Lee, Suhyeon;Moon, Myeongsuk;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In this study, we investigated the effects of a crosslinking agent and a compatibilizer on the mechanical and rheological properties of waste PP and waste ground rubber tire (WGRT) composites. In order to simulate a commercial TPV, the component of waste PP and WGRT was fixed at 30 and 70 wt%, respectively. With the simple addition of SEBS-g-MA into the waste PP/WGRT composites, the tensile strength of the composite was decreased, whereas both the elongation at break and impact strength were significantly increased because of rubbery characteristics of SEBS-g-MA. In order to further improve the properties of the composites, the waste PP/WGRT/SEBS-g-MA composites was revulcanized with dicumyl peroxide (DCP). As expected, mechanical properties of the revulcanized composites was generally improved. Especially, with 15 and 1 phr of SEBS-g-MA and DCP, elongation at break was highest value of about 183% because of the recross-linking of WGRT without chain scission of the main chain. It was found that complex viscosity of the revulcanized composite increased which might verify further vulcanization of the WGRT.

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • Rahman, Md. Shahinur;Yang, Jong-Keun;Shaislamov, Ulugbek;Lyakhov, Konstantin;Kim, Min-Seok;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

Characteristics of low temperature pyrolysis and liquid product distribution of ABS plastics (ABS계 플라스틱의 저온열분해 및 액상생성물 분포 특성)

  • Cha, Wang-Seog;Jang, Hyun-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1059-1066
    • /
    • 2008
  • Characteristics of pyrolysis and liquid product distribution of ABS plastics have been studied in the thermogravimetric(TG) reactor and bomb microreactor. Pyrolysis reactions were performed at temperature $400\sim450^{\circ}C$ and yield of each pyrolytic product was obtained by the weight measurement method. The molecular weight distributions of liquid products were determined by the GC-SIMDIS method. It was observed that solid residue which could not be detected in the thermogravimetric experiments was significantly formed in the batch-type microreactor. It was found that the yield and average molecular weight of liquid products were decreased with the increase of reaction temperature and time. but the formation of styrene monomer was significantly increased. The chain-end scission rate parameters were determined to be 54.1kcal/mole far ABS by the Arrhenius plot.

Effect of Filler and Additive on Performance of Cycloalipatic Epoxy Used for Outdoor Insulators (Cycloaliphatic계 에폭시 절연재료의 옥외성능에 미치는 충전재 및 첨가물의 영향)

  • 연복희;박충렬;허창수;심대섭
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.30-37
    • /
    • 2002
  • This paper reports on the results of weathering test, tracking test and salt-fog test of various kinds of cycloaliphatic epoxy systems. UV irradiation dramatically induced the loss of surface hydrophobicity due to the chain scission attack at the surface under UV irradiation. It could be seen that samples containing an UV absorbent/antioxidant and a silicone oil additive have a good performance in weathering test, while ATH(alumina tri-hydrate) filled ones have high resistance against tracking failure than others. Under salt fog chamber test, specimens mixed with silicone oil are able to suppress leakage current development. It was thought that silicone oil mixed into cycloaliphatic epoxy system could lead to lower the surface energy and to retain hydrophobic properties for a long time, which are desirable for outdoor use.

The Characteristics of Poly(ethylene naphthalate)/Poly(butylene terephthalate) Blends (폴리(에틸렌 나프탈레이트)/폴리(부틸렌 테레프탈레이트) 블렌드 물성 고찰)

  • Kim Hyokap;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.22-27
    • /
    • 2006
  • The effect of transesterification on the rheological property of poly(ethylene naphthalate)/poly(butylene tore-phthalate) (PEN/PBT) blends has been investigated. The melt viscosity of PEN/PBT blends decreased with increasing PBT content due to the relatively low melt viscosity of PBT as well as introducing ransesterification between PEN and PBT Further melt viscosity decrease was achieved by the thermal annealing which caused both the chain scission and the acceleration of transesterfication. Calcium stearate (CaST) was applied as a lubricant in order to lower the melt viscosity of PEN and it was found that CaST was acting as the catalyst of transesterification as well. In general, reactive melt blending of PEN and PBT by transesterification resulted in the decrease of molecular weight of PEN and PBT, as a result, the loss of mechanical properties in PEN/PET blend was inevitable.