• Title/Summary/Keyword: Cesium removal

Search Result 74, Processing Time 0.026 seconds

A Sutdy on Cesium Adorption by Domedtic Zeolite (국산 불석의 세슘 흡착 특성에 관한 연구)

  • 이원근
    • Journal of Surface Science and Engineering
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 1988
  • The purpose of th this study was to determine an adsorption capaty of cesium by domestic zeolite, clinoptilolite, which has adsorption selectivity and resistence to radiolytic degradation, and to find the operation of column packed natural or Na cinoptiloite. The exchange capacity of cesium was 0, 875 m eq-per gram of clinopilolite. Na clinoptilolite was mire effective for cesium removal than naturl clioptilolite. Then, the results show that the domestic cilnoptilolite activated with sodium hydroxide colud be applicable for removal of cesium from liquid radwastes.

  • PDF

Removal Characteristics of Strontium and Cesium tons by Zeolite Synthesized from Fly Ash (석탄회로 합성한 제올라이트에 의한 Sr(II) 및 Cs(I) 이온의 제거 특성)

  • 감상규;이동환;문명준;이민규
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1061-1069
    • /
    • 2003
  • The adsorption behaviors of strontium and cesium ions on fly ash, natural zeolites, and zeolites synthesized from fly ash were investigated. The zeolites synthesized from fly ash had greater adsorption capabilities for strontium and cesium ions than the original fly ash and natural zeolites. The maximum adsorption capacity of synthetic zeolite for strontium and cesium ions was 100 and 154 mg/g, respectively, It was found that the Freundlich isotherm model could fit the adsorption isotherm. The distribution coefficients (K$\_$d/) for strontium and cesium ions were also calculated from the adsorption isotherm data, The distribution coefficients decreased with increasing equilibrium concentration of strontium and cesium ions in solution. By studying the removal of cesium and strontium ions in the presence of calcium, magnesium, sodium, potassium, sulfate, nitrate, nitrite, and EDTA (in the range of 0.01 - 5 mM) it was found that these coexistence ions competed for the same adsorption sites with strontium and cesium ions.

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

Enhanced Removal Efficiency of Low-Concentration Cesium Ion in Water Phase by Using Petroleum Residue Pitch (석유계 잔사유 피치를 이용한 수중에서 저농도 세슘 이온의 제거효율 향상)

  • Choi, Tae Ryeong;Ha, Jeong Hyub;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.25-31
    • /
    • 2021
  • In this research, in order to effectively utilize the petroleum residue pitch, it was used as an adsorbent for removal of cesium ion. In this experiment, acid modification (hydrochloric acid, sulfuric acid) treatment was performed on the adsorbent to improve the ability to remove low-concentration cesium ions dissolved in water. As a result, when the reaction was performed with 9 M sulfuric acid at 25 ℃ and for 240 min, the removal efficiencies of 1.0 and 2.5 mg/L cesium ions were 66 and 51%, respectively. In addition, as the adsorption time increased in the batch experiment, the removal capacity of 1.0 and 2.5 mg/L cesium ions was improved, and when the adsorption reached for 32 hr, the removal efficiencies were 72 and 68%, respectively. Also, in order to increase the ability to remove the remaining cesium ions, an experiment was performed by temperature change (25, 37, 49 ℃), and 1.0 and 2.5 mg/L cesium ions contained in water under the operating conditions of 49 ℃ and 32 hr showed removal efficiencies of 90 and 81%, respectively. Consequently, these experimental results were intended to be used as an adsorption technology that can economically treat low-concentration cesium ions contained in water.

Removal of cesium(137Cs) and iodide(127I) by microfiltration·nanofiltration·reverese osmosis membranes (정밀여과·나노여과·역삼투 막에 의한 세슘과 요오드의 제거)

  • Chae, Seon-Ha;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.549-554
    • /
    • 2014
  • This study was evaluated the applicability of the membrane filtration process (Micro Filtration (MF), nanofiltration membranes (NF), reverse osmosis (RO)) on the major radioactive substances, iodine ($I^-$) and cesium ($Cs^+$) using membranes produced in Korea and domestic raw water. Iodine ($I^-$) or cesium ($Cs^+$) in the microfiltration membrane (MF) process could not be expected removal efficiency by eliminating marginally at the combined state with colloidal and turbidity material. At the domestic raw water (lake water, turbidity 1.2 NTU, DOC 1.3 mg/L) conditions, nanofiltration membrane (NF) and reverse osmosis (RO) showed a high removal rate of about 88 ~ 99% for iodine ($I^-$) and cesium ($Cs^+$) and likely to be an alternative process for the removal of radioactive material.

Manufacture of Novel Composites Synthesized with Ferromagnetic and Nano-Sized Prussian Blue and D eriving Optimum Conditions (강자성체와 나노사이즈의 프러시안 블루가 합성된 새로운 형태의 복합체 제조 및 최적의 적용 조건 도출)

  • Jong Kyu Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.151-158
    • /
    • 2023
  • In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 ㎍ was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir's adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.

A study on removal of cesium and strontium from aqueous solution using synthetic Na-birnessite (나트륨-버네사이트를 이용한 수용액상의 세슘 및 스트론튬 제거에 관한 연구)

  • Cho, Yunchul;Seol, Bit Na
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.155-164
    • /
    • 2013
  • The main purpose of this research was to examine the adsorption/ion exchange characteristics of radioactive species such as cesium and strontium onto synthetic Na-birnessite (sodium-birnessite). As part of efforts to investigate the sorption behavior of cesium and strontium onto synthetic Na-birnessite, batch isotherm tests were performed under different experimental conditions. Na-birnessite was synthesized by the oxidation of $Mn^{2+}$ ions in sodium hydroxide solution. The synthetic Na-birnessite was characterized by powder x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis. Cesium and strontium concentrations were determined by atomic absorption spectroscopy (AAS). The removal efficiency of strontium by Na-birnessite was around 95 % which was much higher than that of cesium (~ 32 %). The results imply that strontium has a higher affinity for Na-birnessite than cesium because strontium, divalent cation leads to larger electrostatic attraction than monovalent cesium.

Study on Removal of Cesium in Water Treatment System (물속의 방사성핵종(세슘) 제거율 연구)

  • Jeong, Gwanjo;Son, Boyoung;Ahn, Chihwa;Lee, Suwon;Ahn, Jaechan;Kim, Bogsoon;Chung, Deukmo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • This study investigated the removal of a radioactive cesium ($Cs^+$) in the water at the water treatment processes. Since cesium is mostly present as the $Cs^+$ ion state in water, it is not removed by sand filtration, and coagulation with polyaluminum chloride (PACl), powdered activated carbon (PAC) and mixture of PACl and PAC. However, it is known that the removal rate of cesium increases as the turbidity increases in raw water. As the turbidity was adjusted by 74 NTU and 103 NTU using the surrounding solids near G-water intake and yellow soils, removal rate of cesium was about 56% and 51%, respectively. In case of a GAC filtration with supernatants after jar-mixing/setting was conducted, 80% of cesium is approximately eliminated. The experimental results show that it is efficient to get rid of cesium when the turbidity of the raw water is more than 80 NTU. In case of a GAC filtration, about 60% of cesium is removed and it is considered by the effect of adsorption. Cesium is not eliminated by microfiltration membrane while about 75% of cesium is removed by reverse osmosis.

Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes

  • Wang, Jianlong;Zhuang, Shuting
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.328-336
    • /
    • 2020
  • Cesium is a major product of uranium fission, which is the most commonly existed radionuclide in radioactive wastes. Various technologies have been applied to separate radioactive cesium from radioactive wastes, such as chemical precipitation, solvent extraction, membrane separation and adsorption. Crown ethers and calixarenes derivatives can selectively coordinate with cesium ions by ion-dipole interaction or cation-π interaction, which are promising extractants for cesium ions due to their promising coordinating structure. This review systematically summarized and analyzed the recent advances in the crown ethers and calixarenes derivatives for cesium separation, especially focusing on the adsorbents based on extractants for cesium removal from aqueous solution, such as the grafting coordinating groups (e.g. crown ether and calixarenes) and coordinating polymers (e.g. MOFs) due to their unique coordination ability and selectivity for cesium ions. These adsorbents combined the advantages of extraction and adsorption methods and showed high adsorption capacity for cesium ions, which are promising for cesium separation The key restraints for cesium separation, as well as the newest progress of the adsorbents for cesium separation were also discussed. Finally, some concluding remarks and suggestions for future researches were proposed.

Decontamination of Simulated Test Piece by Dry Ice Pellet Blasting (드라이아이스 펠렛 분사에 의한 모의 시편의 제염)

  • Shin Jin-Myeong;Park Jang-Jin;Yang Myung-Seung
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.30-36
    • /
    • 2004
  • Dry decontamination technique is required for maintaining nuclear material handling equipment contaminated with highly radioactive material in a hot cell. In order to determine the optimum blasting conditions of dry ice pellet blasting device, the basic experiments have been conducted on the simulated test specimens of four types of metals. The removal efficiency of test piece was evaluated by the XRF analysis and the change of the surface condition before and after blasting. The removal efficiency of cesium on loose contamination was 100% under blasting pressure; 3 kg/$cm^2$, blasting distance; 10 cm, blasting time: 10 sec. In case of fixed contamination, the removal efficiency of cesium was almost 96% under blasting pressure; 4kg/$cm^2$, blasting distance; 10 cm, blasting time; 30 sec.