• 제목/요약/키워드: Cerebral neuron

검색결과 97건 처리시간 0.064초

An EEG-based Brain Mapping to Determine Mirror Neuron System in Patients with Chronic Stroke during Action Observation

  • Kuk, Eun-Ju;Kim, Jong-man
    • The Journal of Korean Physical Therapy
    • /
    • 제27권3호
    • /
    • pp.135-139
    • /
    • 2015
  • Purpose: The aim of this study was to compare EEG topographical maps in patients with chronic stroke after action observation physical training. Methods: Ten subjects were recruited from a medical hospital. Participants observed the action of transferring a small block from one box to another for 6 sessions of 1 minute each, and then performed the observed action for 3 minutes, 6 times. An EEG-based brain mapping system with 32 scalp sites was used to determine cortical reorganization in the regions of interest (ROIs) during observation of movement. The EEG-based brain mapping was comparison in within-group before and after training. ROIs included the primary sensorimotor cortex, premotor cortex, superior parietal lobule, inferior parietal lobule, superior temporal lobe, and visual cortex. EEG data were analyzed with an average log ratio in order to control the variability of the absolute mu power. The mu power log ratio was in within-group comparison with paired t-tests. Results: Participants showed activation prior to the intervention in all of the cerebral cortex, whereas the inferior frontal gyrus, superior frontal gyrus, precentral gyrus, and inferior parietal cortex were selectively activated after the training. There were no differences in mu power between each session. Conclusion: These findings suggest that action observation physical training contributes to attaining brain reorganization and improving brain functionality, as part of rehabilitation and intervention programs.

강직성 편마비 환자에서의 운동장애는 강직 때문인가? 근육약화 때문인가? (Movement Dysfunction in Spastic Hemiparesis: A Problem of Spasticity or Muscular Weakness?)

  • 김종만;안덕현
    • 한국전문물리치료학회지
    • /
    • 제9권3호
    • /
    • pp.125-135
    • /
    • 2002
  • In most of the medical literature that discusses the common problem of movement in patients with cerebral lesions. This critical problem is ascribed to a mechanism involving uninhibited neural activity. The goals of neurological physical therapy are focus on reduce of muscle hypertonicity, facilitates muscle activities, and improve of performance in living environment. A variety of studies suggest that spasticity is a distinct problem and separate from the muscle weakness. It has become increasingly recognized that the major functional deficits following brain damage are largely due to negative features such as muscle weakness and loss of performance rather than spasticity. Adequate recruitment of prime mover, not release was able to carry out the movement tasks well. The strengthening exercise of spastic limbs on changes in muscle properties and performance skill, the repeated motor practice has been identified as crucial for motor recovery. This article support the concept that strengthening is an appropriate intervention to improve the quality of physical function in patients with central nervous system lesions. Further studies and therapeutic approaches should be efforts at improving motor neuron recruitment in agonist rather than reducing activity in antagonists while retraining muscle strengthening.

  • PDF

Selective Suppression of a Subset of Bax-dependent Neuronal Death by a Cell Permeable Peptide Inhibitor of Bax, BIP

  • Kim, Soo-Young;Kim, Hyun;Sun, Woong
    • Animal cells and systems
    • /
    • 제12권4호
    • /
    • pp.211-217
    • /
    • 2008
  • Bax, a pro-apoptotic member of Bcl-2 family proteins, plays a central role in the mitochondria-dependent apoptosis. Apoptotic signals induce the translocation of Bax from cytosol into the mitochondria, which triggers the release of apoptogenic molecules such as cytochrome C and apoptosis-inducing factor, AIF. Bax-inhibiting peptide(BIP) is a cell permeable peptide comprised of five amino acids designed from the Bax-interaction domain of Ku70. Because BIP inhibits Bax translocation and Bax-mediated release of cytochrome C, BIP suppresses Bax-dependent apoptosis. In this study, we observed that BIP inhibited staurosporine-induced neuronal death in cultured cerebral cortex and cerebellar granule cells, but BIP failed to rescue granule cells from trophic signal deprivation-induced neuronal death, although both staurosporine-induced and trophic signal deprivation-induced neuronal death are dependent on Bax. These findings suggest that the mechanisms of the Bax activation may differ depending on the type of cell death induction, and thus BIP exhibits selective suppression of a subtype of Bax-dependent neuronal death.

발생기 흰쥐 대뇌 피질의 형태 구조에 미치는 Ethylene Glycol Monoethyl Ether의 영향 (The Effects of EGEE on the Morphometry in the Thickness and Histogenesis of Rat Cerebral Cortex During Developmental Phase)

  • 이응희;정길남;조기진;조운복
    • 생명과학회지
    • /
    • 제14권6호
    • /
    • pp.975-985
    • /
    • 2004
  • 발생기 횐쥐 대뇌피질 발생의 형태적 변화와 이에 미치는 ECEE 영향을 구명하기 위해, 태생 14일, 태생 18일, 생후 수유기 및 이유기와 성체 대뇌를 각 부위로 나누어 H-E 염색으로 관찰하였다. EGEE 투여시 태생 14일에 대뇌피질의 두께는 두정엽피질이 제일 두꺼웠으나$(95{\pm}12.7\;{\mu}m)$, 대조군$(102{\pm}14.0\;{\mu}m)$에 비해 얇았고, 다른 피질에 비해 후두엽피질$(57{\pm}10.5\;{\mu}m)$이 제일 얇았다. 각 엽의 두께는 수유기 때에 급성장하는 경향을 나타내었으나, 이유기 이후 성장이 둔화되어 성체기 때와 유사했으며, 성체기 때는 두정엽피질$(93.4{\pm}21.6\;{\mu}m)$에서 가장 많이 성장하였다. EGEE 투여시 대뇌피질내 신경모세포의 수는 태생 14일 두정엽피질의 외투층에서 제일 많았으나$(207.7{\pm}11.4/10^{-2}\;mm$, 대조군에 비해 감소되었고$(224.2{\pm}13.8/10^{-2}\;mm$, 크기는 출생후 3일 후두엽피질의 뇌실막세포층에서 제일 크게 나타났으나$(7.5{\pm}1.3\;{\mu}m)$), 대조군$(9.0{\pm}1.2\;{\mu}m)$에 비해 감소되었다. 대조군과 같이 과립세포와 추체세포의 수는 두정엽피질의 II층과 III층에서 가장 많았으나, 대조군에 비해 감소되었고, 크기는 후두엽피질의 IV층과 V층에서 가장 컸으나, 대조군에 비해 감소되었다. EGEE 투여시 대조군과 같이 태생기와 출생후 3일까지의 대뇌피질은 뇌실막세포층, 외투층, 연변층의 3층으로 분화되나, 조직내 빈 강소와 공포가 나타나고, 신경모세포가 합착된 양상이 나타났다. 출생후 5일이후 수유기 때 대뇌피질층은 대조군과 동일하게 4층으로 나눌 수 있으나, 과립세포와 추체세포 내에 빈 강소나 공포가 나타났고, 신경세포의 수는 감소하였다. 이유기와 성체기 때는 대뇌피질의 세포층 구분이 뚜렷하지 않고, 외과립세포, 외추체세포들이 섞여 조직내 빈 강소나 공포가 형성되며, 신경세포 주위 혈관의 내강이 확대되거나 합착되어 나타났다.

일시적 대뇌허혈에 의한 gerbil 해마의 피라밋층에 조직학적 변화 (Histological changes on pyramidal layer of hippocampus following transient cerebral ischemia in gerbils)

  • 양제훈;고필옥;곽수동
    • 대한수의학회지
    • /
    • 제41권4호
    • /
    • pp.467-475
    • /
    • 2001
  • Cardiac arrest, hypoxia, shock or seizure has been known to induce cerebral ischemia. This study was designed to investigate the effect of ischemia on hippocampal pyramidal layer induced by transient bilateral occlusion of the common carotid arteries. Mature Mongolian gerbils were sacrificed at days 2, 4, and 7 after carotid occlusion for 10 minutes. Sham-operated gerbils of control group were subjected to the same protocol except for carotid occlusion. During operation for ischemia, body temperature was maintained $37{\pm}0.5^{\circ}C$ in all gerbils. Paraffin-embedded brain tissue blocks were cut into coronal slices and stained with H-E stain or immunostain by TUNEL method. Neurons with the oval and prominent nucleus and without the eosinophilic cytoplasm in the subfield of hippocamapal pyramidal layer were calculated as to be viable neurons. Their chromatins were condensed or clumped. Their nuclei appeared multiangular or irregularly shrinked. The width of the pyramidal layer was reduced due to the loss of nuclei. At day 2 after reperfusion, some neurons in the CA1 subfield were slightly eosinophilic. But most neurons in the CA2 subfield were strongly eosinophilic. At day 4 day, most neurons in the CA1 subfield were severely damaged and at day 7 day, only a few survived neurons were observed. Survived neurons per longitudinal 1mm sector in the CA1, CA2, CA3, and CA4 subfields of pyramidal layer were investigated. At day 2, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 104.5/mm (54.3%), 51.0/mm (33.8%), 105.5/mm (85.6%), and 124.3/mm (93.5%) compared to the nonischemic control group, respectively. At day 4, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfields were 3.2/mm (1.7%), 51.5/mm(34.2%), 95.3/mm (77.4%), and 112.5/mm (84.6%), respectively. At day 7, the mean numbers of pyramidal neurons in CA1, CA2, CA3, and CA4 subfiedls were 0.8/mm (0.4%), 5.7/mm(3.8%), 9.8/mm (8.0%), and 5.0/mm (3.7%), respectively. The mean numbers of apoptotic positive neurons in the CA1 subfield at day 2, 4, and 7 after reperfusion were 67.8/mm, 153.2/mm and 123.7/mm, respectively. These results suggest that the transient cerebral ischemia cause severe damages in most neurons at day 7 and that the prosminent apoptotic positive neurons in hippocampal pyramidal layer are the delayed neuronal death induced by ischemia.

  • PDF

한국산 플라나리아(Dugesia japonica) 뇌신경절의 미세구조 (Eine Structure of Cerebral Ganglion in the Korean Planaria, Dugesia japonica)

  • 장남섭
    • Applied Microscopy
    • /
    • 제29권1호
    • /
    • pp.57-66
    • /
    • 1999
  • 한국산 플라나리아 뇌신경절을 실험에 사용할 수 있도록 적당한 크기로 적출하여 부위별로 잘라낸 후 2.5% paraformaldehyde-3% glutaraldehyde로 1시간 30분 전고정을 하고 이러서 $OsO_4$로 2시간 후 고정을 한 다음 전자현미경 관찰방법에 따라 실험한 후 다음과 같은 결론을 얻었다. 뇌신경절을 구성하고 있는 세포는 신경세포와 신경분비세포, 신경아교세포 그리고 신경섬유들로 이루어진 신경망 등이었다. 신경세포는 직경이 $5{\mu}m$ 정도인 원형 또는 타원형의 작은 세포로서, 핵은 타원형체로 세포질에 비해 크고 이질염색질이 고르게 발달해 있었으나, 세포질은 세포 소기관의 발달이 미진하여 비교적 단순하게 보였다. 신경분비세포는 그 모양이 긴 타원형이거나 방추형세포로서 타원형의 큰 핵을 소지하였다. 또한 이들의 세포질속에는 직경 60nm 정도의 분비성과립들로 가득차 있었다. 신경아교세포는 매우 드물게 나타나는 방추형의 세포로서 (크기, $6\times0.8{\mu}m$) 이들은 신경섬유 사이에서 주로 관찰되었다. 신경망을 구성하고 있는 신경섬유와 신경종말 속에는 사립체와 신경소관 그리고 4종류의 분비성소포(직경, 75nm, 50nm, 그리고 37nm 정도의 전자밀도가 높은 과립소포 3종과 30nm 크기의 전자밀도가 낮은 투명과 립소포 1종) 등이 존재하였는데, 이들은 단일소포 형태와 혼합소포형태로 존재하였다. 또한 이들의 신경연접 형태는 축삭-수상돌기연접과 축삭-축삭돌기연접 등의 신경 연합만이 주로 관찰되는 특징을 보였다.

  • PDF

Molecular Characterization of Ischemia-Responsive Protein 94 (irp94) Response to Unfolded Protein Responses in the Neuron

  • ;;;;권오유
    • 대한의생명과학회지
    • /
    • 제12권2호
    • /
    • pp.81-89
    • /
    • 2006
  • The ischemia-responsive 94 gene (irp94) encoding a 94 kDa endoplasmic reticulum resident protein was investigated its molecular properties associated with unfoled protein responses. First, the expression of irp94 mRNA was tested after the reperfusion of the transient forebrain ischemia induction at the central nervous system in three Mongolian gerbils. Second, irp94 expression in PC12 cells, which are derived from transplantable rat pheochromocytoma cultured in the DMEM media, was tested at transcriptional and translational levels. The half life of irp94 mRNA was also determined In PC12 cells. Last, the changes of irp94 mRNA expression were investigated by the addition of various ER stress inducible chemicals (A23187, BFA, tunicamycin, DTT and $H_2O_2$) and proteasome inhibitors, and heat shock. High level expression of irp94 mRNA was detected after 3 hours reperfusion in the both sites of the cerebral cortex and hippocampus of the gerbil brain. The main regulation of irp94 mRNA expression in PC 12 cells was determined at the transcriptional level. The half life of irp94 mRNA in PC12 cells was approximately 5 hours after the initial translation. The remarkable expression of irp94 mRNA was detected by the treatment of tunicamycin, which blocks glycosylation of newly synthesized polypeptides, and $H_2O_2$, which induces apoptosis. When PC12 cells were treated with the cytosol proteasome inhibitors such as ALLN (N-acetyl-leucyl-norleucinal) and MG 132 (methylguanidine), irp94 mRNA expression was increased. These results indicate that expression of irp94 was induced by ER stress including oxidation condition and glycosylation blocking in proteins. Expression of irp94 was increased when the cells were chased after heat shock, suggesting that irp94 may be involved in recovery rather than protection against ER stresses. In addition, irp94 expression was remarkably increased when cytosol proteasomes were inhibited by ALLN and MG 132, suggesting that irp94 plays an important role for maintaining the ERAD (endoplasmic reticulum associated degradation) function.

  • PDF

절수에 의한 mongolian gerbil 종뇌 및 간뇌에서 dopamine성 면역반응세포의 분포변화 (The change of dopaminergic immunoreactive cells in telencephalon and diencephalon of mongolian gerbil by water deprivation)

  • 송치원;이경열;박일권;정주영;권효정;이철호;현병화;이근좌;송운재;정영길;이강이;김무강
    • 대한수의학회지
    • /
    • 제40권1호
    • /
    • pp.1-16
    • /
    • 2000
  • Nowadays, mongolian gerbil is notably utilized for the research of brain and water deprivation because of a congenital incomplete willis circle structure in the brain, audiogenic seizure in low noise, and special cholesterol metabolism without water absorption for a long time. In this study, we are intend to identify the morphological changes of the catecholaminergic neuron of brain according to the time lapse in the condition of long term water deprivation. 55 mongolian gerbil were divided 10 groups(control, 1, 2, 3, 4, 5, 10, 15, 20, 42th day water deprivation group), of which each group include 5 mongolian gerbils and 5 normal mongolian gerbils in control group were also used for brain atlas as a control. The brains were observed by the immunohistochemical stain using the TH, DBH and PMNT antibody. The results were as followings; 1. The nerve fibers of the TH-immunoreactive neuron were observed only in the and corpus striatum of the telencephalon. 2. Intensity of the immunostain of the nerve fiber in the cerebral cortex and corpus striatum was decreased gradually day by day after water deprivation. 3. The TH-immunoreactive nerve cells were observed in the paraventricular and periventricular nucleus of the 3rd ventricular in the hypothalamus of mongolian gerbil but the number of nerve cells were decreased from the first day of the water deprivation to the 10th day and increased until the 20th day, after than redecreased from the 20th day by the continuous water deprivation. The number of nerve fibers in this area were increased in the first day, but decreased from the 2nd day of water deprivation. The shape and density of the dopamine secreting cells in the brain of mongolian gerbil by the immunoreactive stain were changed in the continuous water deprivation. In this results, we can conclude that dopamine concerned in the water metabolism of mongolian gerbil, and mongolian gerbil could be used as an animal model for the research of water deprivation.

  • PDF

거풍지보단(祛風至寶丹)이 Mongolian Gerbil의 가역성 전뇌허혈 모델에 미치는 영향 (The Effect of Geupoongjibo-dan Extracts on Reversible Forebrain Ischemia in Mongolian Gerbil)

  • 정완우;박인식;신길조;이원철;정승현
    • 대한한방내과학회지
    • /
    • 제22권2호
    • /
    • pp.145-160
    • /
    • 2001
  • Objectives : The purpose of this investigation is to evaluate the effect of Geupoongjibo-dan Extracts on Reversible Forebrain Ischemia in Mongolian Gerbils. Methods : The change rate of water content in cerebral tissues, the numercal change of the CA1 pyramidal neuron in the hippocampus, the change of delayed neuronal death(necrosis apoptosis) through light microscopy, the reactivity change of glycoprotein in neuronal membrane and the ultrastructural change of pyramidal neuron through electron microscopy caused by dalayed neuronal death were investigated. Results : 1. The change rate of water content in the normal group showed 78.90% on the third day, and 79.12% on the seventh day after an attack of ischemia. The rate in the control group showed 82.25% and 85.13%, respectively. The rate in the sample group showed a significant decrease: 81.72% and 83.66%. 2. Light microscopy revealed that the cells, continuous and systematic forms in the pyramidal cells of hippocampus, changed into discontinuous and unsystematic forms in the normal group when compared with the control group. The cells were less damaged in the sample group. 3. The mean of the numerical change of the CA1 pyramidal neurons in the hippocampus was 104 in the normal group. The mean of the control group was decreased to 27. The mean of the sample group was 44. 4. TUNEL staining examination reveals that the whole part of the hippocampus of the normal group had negative reactivity. As far as CA1 pyramidal neurons in the hippocampus, the control group had positive reactivity. The sample group was more positive than the control group. 5. Electron microscopy reveals that the ischemic injury of the control group had both necrotic and apoptotic morphology. The sample group was less necrotic, and more apoptotic morphology than the control group. 6. Lectin histochemisrical examination reveals that the normal group had positive reactivity to PNA and SBA in interneuron, and weak positive reactivity to WGA Con A LCA in intercelluar space. The reactivity to PNA and WGA decreased in the control group. The reactivity to PNA and WGA tended to increase in the sample group. Conclusions : The data shows that the effect of Geupoongjibo-dan Extracts on Reversible Forebrain Ischemia in MG is a significant result.

  • PDF

흰쥐 대뇌피질에서의 Somatostatin 신경세포의 생후발달에 관한 면역조직화학적 연구 (IMMUNOHISTOCHEMICAL STUDY ON THE POSTNATAL DEVELOPMENT OF SOMATOSTATIN IMMUNOREACTIVE NEURONS IN THE RAT CEREBRAL CORTEX)

  • 김선미;차중익;홍강의
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제4권1호
    • /
    • pp.79-90
    • /
    • 1993
  • 대뇌피질에서 somatostatin 함유 신경세포의 생후 발달과정을 규명하고자 생후 1, 2, 3, 4주 및 2, 3개월의 흰쥐 대뇌를 대상으로 면역조직화학적 염색을 시행하여 신경세포의 형태, 크기 및 분포와 대뇌피질 영역별 세포 수의 변화를 관측하여, 아래와 같은 결과를 얻었다. 1) 형태 및 분포의 변화 생후 1주부터 비교적 염색성이 뚜렷한 다양한 형태의 미성숙 신경세포가 대뇌피질 V, VI층에서 관찰되다가 생후 2주에는 세포질내의 염색성이 균일하게 증가되어 있고 여러개의 돌기를 내는 뭇극성세포가 V, VI층뿐 아니라 제 II층에서도 출현하였다. 생후 3주부터는 신경세포체가 점차 II, III층과 V, VI층에 넓게 분포하였고 미성숙한 신경세포는 II, III층에서 보다 많이 관찰되었으며 생후 4주에는 IV, V, VI층에서의 세포의 감소가 뚜렷하여 주로 II, III, IV층에 분포하는 양상을 보였고 미성숙세포는 거의 관찰되지 않았다. 2) 신경세포체의 크기의 변화 세포체의 크기는 생후 2주를 전후하여 일시적으로 증가하여 최대값을 보이다가 이후 점차 감소하여 생후 8주째에 성숙흰쥐에서의 크기가 되었다. 3) 내뇌피질 영역별 신경세포체 수의 변화 전두, 두정 1, 2, 측두 1, 배모양, 섬피질에서는 생후 1주에서 2주째에 걸쳐 큰 차이없이 세포체의 수가 최대로 증가했다가 이후 성숙흰쥐 수준으로 감소하는 양상을 보였으며 측두 3, 후두, 띠, 코주위 피질에서는 생후 2주째에 최대값을 보였다.

  • PDF