• Title/Summary/Keyword: Cerebral ischemia

Search Result 449, Processing Time 0.029 seconds

Immunohistochemical Study of Yanggyuksanhwa-tang on Focal Cerebral Ischemia of Diabetic Rats (당뇨흰쥐의 국소뇌허혈에 대한 양격산화탕(凉膈散火湯)의 면역조직화학적 연구)

  • Boo, Il-Gwon;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.741-747
    • /
    • 2007
  • This study evaluated neuroprotective effects of Yanggyuksanhwa-tang (YST), which have been known to be efficacy in the treatment of the stroke and diabetes. on focal cerebral ischemia of diabetic rats. On primary experiment, diabetic condition in rats was induced by streptozotocin injection, then, focal cerebral ischemia was induced by the middle cerebral artery occlusion (MCAO) under the diabetic condition. Then neuroprotective effect of YST was observed with changes of infarct size and volume, expressions of c-Fos, Bax, and hypoxia inducible factor (HIF)-1${\alpha}$ in the brain tissues by using 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunohistochemistry. YST treatment showed a significant decrease of infarct size and volume induced by MCAO in diabetic rats. YST treatment showed a significant decrease of c-Fos and Bax positive neurons in cortex penumbra. YST treatment showed a decrease of HIF-l${\alpha}$ positive neurons in cortex penumbra, but it was not significant statistically. These results suggest that YST has effects on neuroprotection against cerebral infarct under diabetic condition. And it is supposed that neuroprotective effect of YST reveals by anti-apoptosis mechanism.

Superior Cervical Sympathetic Ganglion Block may not Influence Early Brain Damage Induced by Permanent Focal Cerebral Ischemia in Rats (상경부교감신경절블록은 백서의 영구국소뇌허혈에서 초기의 뇌손상에는 영향을 미치지 못한다)

  • Kim, Hyun Hae;Leem, Jeong Gill;Shin, Jin Woo;Shim, Ji Yeon;Lee, Dong Myung
    • The Korean Journal of Pain
    • /
    • v.21 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • Background: Cerebral blood vessels are innervated by sympathetic nerves from the superior cervical ganglion (SCG). The purpose of the present study was to evaluate the neuroprotective effect of superior cervical sympathetic ganglion block in rats subjected to permanent focal cerebral ischemia. Methods: Thirty male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (control, lidocaine and ropivacaine). A brain injury was induced in all rats by middle cerebral artery occlusion with a nylon thread. The animals of the local anesthetic group received $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine in the SCG. Neurologic scores were assessed 24 hours after brain injury. Brain samples were then collected. The infarct and edema ratios were measured by 2.3.5-triphenyltetrazolium chloride staining. Results: There were no differences in the death rates, neurologic scores, or infarction and edema ratios between the three groups. Conclusions: These findings suggest that superior cervical sympathetic ganglion block may not influence the brain damage induced by permanent focal cerebral ischemia in rats.

Photochemically Induced Cerebral Ischemia in a Mouse Model

  • Park, Sung-Ku;Lee, Jung-Kil;Moon, Kyung-Sub;Joo, Sung-Pil;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.3
    • /
    • pp.180-185
    • /
    • 2006
  • Objective : Middle cerebral artery occlusion[MCAO] has widely been used to produce ischemic brain lesions. The lesions induced by MCAO tend to be variable in size because of the variance in the collateral blood supply found in the mouse brain. To establish a less invasive and reproducible focal ischemia model in mice, we modified the technique used for rat photo thrombosis model. Methods : Male C57BL/6 mice were subjected to focal cerebral ischemia by photothrombosis of cortical microvessels. Cerebral infarction was produced by intraperitoneal injection of Rose Bengal, a photosensitive dye and by focal illumination through the skull. Motor impairment was assessed by the accelerating rotarod and staircase tests. The brain was perfusion-fixed for histological determination of infarct volume four weeks after stroke. Results : The lesion was located in the frontal and parietal cortex and the underlying white matter was partly affected. A relatively constant infarct volume was achieved one month after photothrombosis. The presence of the photothrombotic lesion was associated with severe impairment of the motor performance measured by the rotarod and staircase tests. Conclusion : Photothrombotic infarction in mice is highly reproducible in size and location. This procedure can provide a simple method to produce cerebral infarction in a unilateral motor cortex lesion. In addition, it can provide a suitable model for study of potential neuroprotective and therapeutic agents in human stroke.

The Mechanism Study of Prescription for Treatment Abundant Expectoration due to Deficiency of Qi on Brain Disease in Rats (기허담성치방이 뇌병환에 미치는 기전연구)

  • Lee Nam Goo;Seong Sin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1083-1088
    • /
    • 2004
  • This Study was designed to investigate the mechanism of Prescription for Treatment Abundant Expectoration due to Deficiency of Qi(Yukgunja-Tang, YGT) on cerebral hemodynamics [regional cerebral blood f1ow(rCBF) and pial arterial diameter(PAD)] in cerebral ischemia rats. The results were as follows: Both rCBF and PAD were significantly and stably decreased by YGT (10㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in Control group. Pretreatment with indomethacin(1㎎/㎏, i.p.), an inhibitor of cyclooxygenase and methylene blue(10㎍/㎏, i.p.), an inhibitor of guanylate cyclase significantly but unstably increased the YGT-induced increases in rCBF during the period of cerebral reperfusion. Pretreatment with indomethacin significantly and stably decreased the YGT-induced increases in PAD during the period of cerebral reperfusion, but pretreatment with methylene blue increased unstably the YGT-induced increases in PAD during the period of cerebral reperfusion. In conclusion, the present authors thought that mechanism of YGT on cerebral hemodynamics was connected with guanylate cyclase in cerebral ischemia rats.

Effect of Chungpaesagan-tang on Ischemic Damage Induced by Middle Cerebral Artery Occlusion in Diabetic Rats (청폐사간탕이 탕요유발 흰주의 뇌허혈손상에 미치는 영향)

  • Jeong Chun-geun;Kim Eun-Young;Shin Jung-Won;Sohn Youngjoo;Lee Hyun-Sam;Jung Hyuk-Sang;Sohn Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.217-230
    • /
    • 2005
  • Objectives: Chungpaesagan-tang (CPSGT), which is frequently used for treating patients of cerebrovascular disease, has not been reported by clinical doctors concerning the effect of neuronal aptosis caused by brain ischemia. To study the effect of CPSGT on focal cerebral ischemia in normal and diabetic rats and SHR, focal cerebral ischemia was induced by transient MCAO, and after onset CPSGT was administrated. Methods: Rats (Sprague-Dawley) were divided into four groups: sham-operated group, MCA-occluded group, CPSGT­administrated group after MCA occlusion, and normal group. The MCA was occluded by intraluminal method. CPSGT was administrated orally twice (l and 4 hours) after middle cerebral artery occlusion. All groups were sacrificed at 24 hours after the surgery. The brain tissue Was stained with $2\%$ triphenyl tetrazolium chloride (TTC) or $1\%$ cresyl violet solution, to examine effect of CPSGT on ischemic brain tissue. The blood samples were obtained from the heart.~. Tumor necrosis $factor-\alpha$ level and interleukin-6 level of serum was measured from sera using enzyme-linked immunoabsorbent assay (ELISA). Then changes of immunohistochemical expression of $TNF-\alpha$ in ischemic damaged areas were observed. Results: In NC+MCAO+CP and DM+MCAO+CP, CPSGT significantly (p<0.01) decreased the number of neuron cells compared to the control group. CPSGT markedly reduced (p<0.01) the infarct size of the forebrain in distance from the interaural line on cerebral ischemia in diabetic rats. CPSGT significantly reduced the $TNF-\alpha$ expression in penumbra region of damaged hemisphere in diabetic rats. Conclusions: CPSGT had a protective effect on cerebral ischemia in SD rats, especially in diabetic rats compared with normal SD rats.

  • PDF

Effect of BHT-C extract on the infarction in cerebral ischemic rats (BHT-C의 허혈성 뇌졸중 동물에서의 뇌부종 억제효과)

  • Kim, Sung-Yoon;Park, Yong-Ki
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.11
    • /
    • pp.58-65
    • /
    • 2008
  • Objectives : BHT has been commonly used to treatment of brain disorders in Oriental clinic in Korea. The purpose of this study was to determine the inhibitory effect of modified BHT-C extract on the transient forcal cerebral ischemia in rats. Method : We prepared ischemic rats by the transient middle cerebral artery occlution(MCAO; 90 min occlusion and 144 h reperfusion) in rat brains. BHT-C extract (100 and 200 mg/kg, i.p.) was administered every day after the onset of MCAO until 6 day. Result : BHT-C extract increased survival rate of ischemic rats compared with vehicle-treated rats. BHT-C extract treated rats (100 and 200 mg/kg) were shown a significant reduction in infarct volume compared with vehicle-treated rats. Conclusions : These results suggest that BHT-C extract may contribute to its protective effects in brain ischemia through the reduction of brain infarction.

  • PDF

Effect of Puerariae Radix on HSP70 Expression in Ischemic Damaged Rats (갈근이 뇌허혈 손상 흰쥐의 해마 구역별 HSP70 발현에 미치는 영향)

  • Kim Youn Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.167-171
    • /
    • 2004
  • This study investigated a HSP70 expression of Puerariae Radix in cerebral ischemia. The global cerebral ischemia was induced by bilateral common carotid arteries occlusion under hypotension (40 mmHg) in Sprague-Dawley rats. After the treatment of Puerariae Radix extract, the heat shock protein 70 (HSP70) expressions were measured immunohistochemically. The upregulation of HSP70 expression in hippocampal regions resulted by cerebral ischemia. Then Puerariae Radix treatment demonstrated significant decrease of HSP70 expressions in CA1 region and dentate gyrus of the hippocampus as compared with control group. These results suggested that Puerariae Radix reveals the neuroprotective effect through the control of noxious stress stimulations to neurons.

Neuroprotective Mechanisms of Aloesin against Focal Ischemic Brain Injury

  • Lee, Moon-Jung;Cho, Eun-Young;Lee, Yong-Ha;Jung, Kyung-Ja;Song, Yun-Seon;Jin, Chang-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.303.1-303.1
    • /
    • 2002
  • Recent studies have suggested that the cerebral ischemia induced the neuronal cell death by mediating multiple mechanisms with necrosis and/or apoptosis. The present study examined neuroprotective mechanism of aloesin against transient focal cerebral ischemia. Aloesin. main component of aloe possesses various biological activates such as wound healing. anti-gastric ulcer. and chemopreventive activity. Transient focal cerebral ischemia was induced by 120 min MCAO. (omitted)

  • PDF

Neuroprotective Effects of Treatment with Aloesin in Rat Model of Permanent Focal Cerebral Ischemia

  • Cho, Eun-Young;Lee, Moon-Jung;Lee, Yong-Ha;Jung, Kyung-Ja;Song, Yun-Seon;Jin, Chang-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.304.1-304.1
    • /
    • 2002
  • Brain injury resulting from cerebral ischemia remains a major public health problem. Aloesin. main component of aloe possesses various biological activities such as wound healing, anti-gastric ulcer, and chemopreventive activity. In this study we investigated whether treatment with aloes in could protect brain injury induced by permanent focal cerebral ischemia in rats. We also compared aloes in with other neuroprotective. drugs such as MK801 and ebselen. (omitted)

  • PDF

The Effects of NEES on PARP Expression and Cell Death in Rat Cerebral Cortex After Ischemic Injury

  • Kim, Sung-Won;Lee, Jung-Sook;Um, Ki-Mai;Kim, Ji-Sung;Lee, Suk-Hee;Choi, Yoo-Rim;Kim, Nyeon-Jun;Kim, Bo-Kyoung;Cho, Mi-Suk;Park, Joo-Hyun;Kim, Soon-Hee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2010
  • The majority of strokes are caused by ischemia and result in brain tissue damage, leading to problems of the central nervous system including hemiparesis, dysfunction of language and consciousness, and dysfunction of perception. The purpose of this study was to investigate the effects of Poly(ADP-ribose) polymerase(PARP) on necrosis in neuronal cells that have undergone needle electrode electrical stimulation(NEES) prior to induction of ischemia. Ischemia was induced in male SD rats(body weight 300g) by occlusion of the common carotid artery for 5 min, after which the blood was reperfused. After induction of brain ischemia, NEES was applied to Zusanli(ST 36), at 12, 24 and 48 hours. Protein expression was investigated using immuno-reactive cells, which react to PARP antibodies in cerebral nerve cells, and Western blotting. The results were as follows: In the cerebral cortex, the number of PARP reactive cells after 24 hours significantly decreased(p<.05) in the NEES group compared to the GI group. PARP expression after 24 hours significantly decreased(p<.05) in the NEES group compared to the GI group. As a result, NEES showed the greatest effect on necrosis-related PARP immuno-reactive cells 24 hours after ischemia, indicating necrosis inhibition, blocking of neural cell death, and protection of neural cells. Based on the results of this study, NEES can be an effective method of treating dysfunction and improving function of neuronal cells in brain damage caused by ischemia.

  • PDF