• Title/Summary/Keyword: Cerebral cortex

Search Result 436, Processing Time 0.032 seconds

Regional Cerebral Perfusion in Progressive Supranuclear Palsy (진행성 핵상 마비에서의 국소 뇌혈류)

  • Lee, Won-Yong;Lee, Kyung-Han;Lee, Ki-Hyeong;Yoon, Byung-Woo;Lee, Myung-Chul;Lee, Sang-Bok;Jeon, Beom-S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.1
    • /
    • pp.47-55
    • /
    • 1996
  • Progressive supranuclear palsy (PSP) is a parkinson-plus syndrome characterized clinically by supranuclear ephthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormality and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using $^{99m}Tc$-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex.

  • PDF

Measurement of Regional Cerebral Blood Volume in Normal Rabbits on Perfusion-weighted MR Image (MR 관류강조영상에서 정상 가토의 국소 뇌혈류량 측정)

  • 박병래;예수영;나상옥;김학진;이석홍;전계록
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.2
    • /
    • pp.100-106
    • /
    • 2000
  • Purpose : To evaluate the usefulness of cerebral blood flow measurement applied to perfusion weighted image with short-scan time single shot gradient echo-planar technique in measuring cerebral blood volume(rCBV) of normal rabbits. Materials and methods : With 2.1-3.6 kg weighted rabbits, image is acquired when they are in supine position in children positioner. Perfusion weighted image is acquired to 44 seconds per 1 second successively. After 4 seconds later, Gd-DTPA 2ml are injected into int. jugular vein with 2 ml per second and normal saline is also injected after that. Same technique is applied 2 times per 30 minites in same rabbit. After Image is obtained in two part of cerebral cortex at vertex, convexity, in one of basal ganglia with choosing about $3-5{\textrm{mm}^2}$ areas. Curve of signal intensity changes in time sequence is drawn. After this images are transmitted by PC and software IDL, regional cerebral blood volume is measured with imaging processing program made by us. Results : With 22 of 24 rabbits, satisfactory 1-2 signal intensity versus time curve is made. Cerebral blood capacity and contrast media stay time (ST) is measured in two cerebral cortex and basal ganglia refering in parietal cerebral cortex. Mean focal cerebral blood flow capacity ratio in cortex was $0.97{\pm}0.35$ and in basal ganglia, $0.99{\pm}0.37$, mean contrast media stay time in cortex was $9.83{\pm}1.63$ sec and in basal gaiglia, $9.42{\pm}1.14$ sec, but there was no statistically significant difference between two areas ($\rho$=0.05). Conclusion : In cerebral cortex and basal ganglia, there is no difference in mean focal blood volume and mean contrast stay time. Therefore, PWI is useful in cerebral blood flow and early diagnosis, prognosis of cerebral ischemic disease. Hereafter, it is helpful in analysing cerebral blood flow changes with comparison difference in rCBV between normal tissue and ischemic tissue, and that with DWI finding in infarcted patient.

  • PDF

Snake Robot Motion Scheme Using Image and Voice (감각 정보를 이용한 뱀 로봇의 행동구현)

  • 강준영;김성주;조현찬;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.127-130
    • /
    • 2002
  • Human's brain action can divide by recognition and intelligence. recognition is sensing voice, image and smell and Intelligence is logical judgment, inference, decision. To this concept, Define function of cerebral cortex, and apply the result. Current expert system is lack, that reasoning by cerebral cortex and thalamus, hoppocampal and so on. In this paper, With human's brain action, wish to embody human's action artificially Embody brain mechanism using Modular Neural Network, Applied this result to snake robot.

  • PDF

Effects of the Bee Venom Herbal Acupuncture on the Neurotransmitters of the Rat Brain Cortex

  • Yun, Hyoung-Seok;Lee, Jae-Dong
    • Journal of Pharmacopuncture
    • /
    • v.4 no.1
    • /
    • pp.125-139
    • /
    • 2001
  • In order to study the effects of bee venom herbal acupuncture on the neurotransmitters of the rat brain cortex, herbal acupuncture with the bee venom group and normal saline group was performed bilaterally on the point corresponding to LI 4 of the rat. The average optical density of the neurotransmitters from the cerebral cortex was analyzed 30 minutes after the herbal acupuncture with immunohistochemical methods. The results were as follows: 1. The density of NADPH-diaphorase in the bee venom group was increased significantly at the motor cortex, visual cortex, auditory cortex, cingulate cortex, retrosplenial cortex, and perirhinal cortex, compared to the normal saline group. 2. The average optical density of vasoactive intestinal peptide in the bee venom group had significant changes at the insular cortex, retrosplenial cortex, and perirhinal cortex, compared to the normal saline group. 3. The average optical density of neuropeptide-Y in the bee venom group increased significantly at the visual cortex and cingulate cortex, compared to the normal saline group.

Effects of Yanggyuksanhwa-tang on Global Cerebral Ischemia of Diabetic Rats Induced by Streptozotocin (양격산화탕(凉膈散火湯)이 당뇨흰쥐의 전뇌허혈에 미치는 영향)

  • Kim, Eui-Jong;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.321-327
    • /
    • 2008
  • This study evaluated neuroprotective effects of Yanggyuksanhwa-tang (YST) on global cerebral ischemia of diabetic rats. On primary experiment, diabetic condition in rats was induced by streptozotocin injection. Secondarily, global cerebral ischemia was induced by bilateral occlusion of the common carotid artery with hypotension (BCAO) under the diabetic condition. Then neuroprotective effect of YST was observed with changes of neuronal c-Fos and Bax expressions, and GFAP expression in the brain tissues by using immunohistochemistry. YST treatment was resulted significant decrease of c-Fos expression in CA1 hippocampus induced by BCAO on diabetic rats. YST treatment was resulted significant decrease of Bax expression in CA1 hippocampus induced by BCAO on diabetic rats. YST treatment was resulted significant decrease of c-Fos expression in cerebral cortex and caudoputamen induced by BCAO on diabetic rats. YST treatment was resulted significant decrease of GFAP expression in cerebral cortex induced by BCAO on diabetic rats. These results suggest that YST has effects on neuroprotection against cerebral ischemic damage under diabetic condition. And it is supposed that neuroprotective effect of YST reveals by anti-apoptosis mechanism.

Effect of Chengsimyeunja-eum (淸心蓮子飮) and Sunghyangjungi-san (星香正氣散) on Streptozotocin-induced Ischemic Damaged Diabetic Rats (청심연자음(淸心蓮子飮)과 성향정기산(星香正氣散)이 Streptozotocin유발(誘發) 당뇨(糖尿)흰쥐의 뇌허혈 손상(腦虛血 損傷)에 미치는 영향(影響))

  • Park, Soon-Il;Lee, Won-Chul
    • The Journal of Korean Medicine
    • /
    • v.28 no.3 s.71
    • /
    • pp.216-231
    • /
    • 2007
  • Objectives : Chengsimyeunja-eum and Sunghyangjungi-san are prescriptions used for cerebral infarction clinically; it is known that these formulas reduce ischemic damage. According to previous research data, controlling certain types of glucose is considered to decrease the risk of cerebral infarction. Based on this fact, we investigated the effects of Chengsimyeunja-eum and Sunghyangjungi-san extracts on reperfusion following ischemic damage to diabetic rats, the change of c-FOS and Bax positive neurons in the hippocampus and cerebral cortex and protein through immunohistochemical methods, changes of serum glucose level, serum triglyceride level, and hepatic glucokinase activity. Methods : We induced ischemic damaged in diabetic rats, and the rats were administered Chengsimyeunja-eum and Sunghyangjungi-san extracts. Results : Chengsimyeunja-eum demonstrated significant decrease of c-Fos positive neurons in both hippocampus and cerebral cortex as well as a significant decrease of Bax positive neurons in hippocampus after ischemic damage on diabetic rats and decrease of serum glucose level after ischemic damage on diabetic rats. Sunghyangjungi-san demonstrated significant decreases of c-Fos and Bax positive neurons in both hippocampus and cerebral cortex after ischemic damage on diabetic rats. Conclusions : Chengsimyeunja-eum, effect on glucose level control, has a remarkable effect of protection of neurons not effective on glucose level. Sunghyangjungi-san showed neuroprotective effect through preventing neuronal cell death.

  • PDF

Activation Differences of Superior Parietal Lobule and Cerebellum Areas While Inferring Geometrical Figures per Intellectual Category in Adolescents (도형 과제 수행 때 나타나는 청소년의 지능별 대뇌 및 소뇌의 활성도 차이 분석)

  • Kim, Ye Rim
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.637-648
    • /
    • 2013
  • The relationship between the cerebral cortex and human intelligence has been studied using various methods, and related brain areas involved in intellectual manifestation have been discovered individually. Such studies have also shown the cerebellum is closely involved in various cognitive functions such as language, memory, and information processing. However, studies showing an activity difference between the cerebral cortex and cerebellum when performing specific tasks are hard to find. This study searched and analyzed the active regions of the cerebral cortex and cerebellum seen while performing the inference of geometrical figures. A WAIS intelligence test was conducted using 81 healthy boys (16.3 years of age on average), and five categories were classified. While performing the inference of shapes, their brain images were taken using functional magnetic resonance imaging (fMRI). As a result, the activity in 12 brain regions was observed, including in the cerebral cortex, the bilateral inferior parietal, the visual cortex, bilateral superior parietal, frontal-Inf-Tri-R, and bilateral caudate, while activities in 5 discrete areas were seen in the cerebellum. In particular, the higher the intelligence (IQ) of the subject, the stronger their activity. Among those with the most superior intelligence, subjects with an IQ of 140-147 showed significantly higher activity compared to the other groups. Such results seem to represent a very high utilization of intelligence in a highly gifted group, and we can expect to use this to determine the super gifted.

Changes of Regional Cerebral Glucose Metabolism in Normal Aging Process : A Study With EDG PET (정상적인 노화 과정에서 국소뇌포도당대사의 변화: FDG PET 연구)

  • Yoon, Joon-Kee;Kim, Sang-Eun;Lee, Kyung-Han;Choi, Yong;Choe, Yearn-Seong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.231-240
    • /
    • 2001
  • Purpose: Normal aging results in detectable changes in the brain structure and function. We evaluated the changes of regional cerebral glucose metabolism in the normal aging process with FDG PET. Materials and Methods: Brain PET images were obtained in 44 healthy volunteers (age range 20-69 'y'; M:F = 29:15) who had no history of neuropsychiatric disorders. On 6 representative transaxial images, ROIs were drawn in the cortical and subcortical areas. Regional FDG uptake was normalized using whole brain uptake to adjust for the injection dose and correct for nonspecific declines of glucose metabolism affecting all brain areas equally. Results: In the prefrontal, temporoparietal and primary sensorimotor cortex, the normalized FDG uptake (NFU) reached a peak in subjects in their 30s. The NFU in the prefrontal and primary sensorimotor cortex declined with age after 30s at a rate of 3.15%/decade and 1.93%/decade, respectively. However, the NFU in the temporoparietal cortex did not change significantly with age after 30s. The anterior (prefrontal) posterior (temporoparietal) gradient peaked in subjects in their 30s and declined with age thereafter at a rate of 2.35%/decade. The NFU in the caudate nucleus was decreased with age after 20s at a rate of 2.39%/decade. On the primary visual cortex, putamen, and thalamus, the NFU values did not change significantly throughout the ages covered. These patterns were not significantly different between right and left cerebral hemispheres. Of interest was that the NFU in the left cerebellar cortex was increased with age after 20s at a rate of 2.86%/decade. Conclusion: These data demonstrate regional variation of the age-related changes in the cerebral glucose metabolism, with the most prominent age-related decline of metabolism in the prefrontal cortex. The increase in the cerebellar metabolism with age might reflect a process of neuronal plasticity associated with aging.

  • PDF

Quantitative RT-PCR for Measuring C-fos Gene Expression in Rat Brain after ECS (전기경련충격시 경쟁적 역전사 중합효소연쇄반응(CRT-PCR)을 이용한 흰쥐 뇌 c-fos 유전자의 발현 양식 분석)

  • Yang, Byung-Hwan;Lee, Jei-Wook;Park, Eung-Chul;Yu, Jae-Hak;Cho, Goang-Won;Yang, Bo-Gee;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.181-190
    • /
    • 1996
  • To clarify the mechanism of action of electroconvulsive shack(ECS) in respect to molecular biology, and to detect the quantitative amount of change of c-fos gene expression after ECS in the rat's brain, the authors obtained brain specimens from the striatum, cerebral cortex, hippocampus, and cerebellum. Each brain was removed within 30min. after ECS(130V, 0.5sec) and ECS-sham. Then we performed RT-PCR. The results are 1) ECS was found to affect the expression of immediate early genes. 2) the cerebral cortex and hippocampus was more influenced by ECS thon in the cerebellum and striatum. From these results, we can suggest that ECS is related to the mechanism of cognition, mood, memory which is correlated to cerebral cortex and hippocampus.

  • PDF