• Title/Summary/Keyword: Cerebral blood vessel

Search Result 59, Processing Time 0.024 seconds

Comparison of bone subtraction CT angiography with standard CT angiography for evaluating circle of Willis in normal dogs

  • Soyon An;Gunha Hwang;Rakhoon Kim;Tae Sung Hwang;Hee Chun Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.65.1-65.9
    • /
    • 2023
  • Background: Bone subtraction computed tomography angiography (BSCTA) is a useful alternative technique for improving visualization of vessels surrounded by skull bone. However, no studies have compared computed tomography angiography (CTA) and BSCTA for improving the visibility of canine cerebral blood vessels. Objectives: To evaluate the potential benefit of BSCTA for better delineation of brain arteries of the circle of Willis (CoW) in dogs by comparing BSCTA with non-subtraction computed tomography angiography (NSCTA). Methods: Brain CTA was performed for nine healthy beagle dogs using a bolus tracking method with saline flushing. A total dose of 600 mgI/kg of contrast agent with an iodine content of 370 mgI/mL was injected at a rate of 4 ml/s. Bone removal was achieved automatically by subtracting non-enhanced computed tomography (CT) data from contrast CT data. Five main intracranial arteries of the CoW were analyzed and graded on a scale of five for qualitative evaluation. Results: Scores of basilar artery, middle cerebral artery, and rostral cerebral artery in the BSCTA group were significantly higher than those in the NSCTA group (p = 0.001, p = 0.020, and p < 0.0001, respectively). Scores of rostral cerebellar artery (RcA) and caudal cerebral artery (CCA) did not differ significantly between the two groups. However, scores of RcA and CCA in the BSCTA group were higher than those in the NSCTA group. Conclusions: BSCTA improved visualization of intracranial arteries of the CoW with close contact to bone. Thus, it should be recommended as a routine scan method in dogs suspected of having brain vessel disease.

2 Cases of Lower Limb Monoplegia due to Brain Cortical Infarction (대뇌 피질 경색으로 인한 하지 단마비 환자 한방치험 2례)

  • Shin, Jung-Ae;Son, Dong-Hyuk;Yu, Kyung-Suk;Lee, Jin-Goo;Lee, Young-Goo
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.263-269
    • /
    • 2001
  • Monoplegia is the paralysis of either the upper or lower limb. Monoplegia is commonly caused by an injury to the cerebral cortex; it is rarely caused by an injury to the internal capsule, brain stem, or spinal cord. Most cerebral cortex is derived from the occlusion of a brain cortex blood vessel due to thrombus or embolus. According to motor homunculus, lower limb monoplegia occurs from limited damage to the most upper part of the primary motor area(Brodmann's area 4, located in precentral gyrus). Clinically, lower limb monoplegia due to brain cortical infarction is commonly misunderstood as monoplegia due to spinal injury because the lesion is situated at the most upper part of precentral gyrus. We had many difficulties in finding lesion on brain CT, but we diagnosed two patients correctly by using an MRI, who have lower limb monoplegia due to brain cortical infarction oriental treatment.

  • PDF

A Cross-sectional Study on Differences in Blood Homocysteine Levels of Acute Cerebral Infarction Patients Categorized by Sasang Constitutional Medicine (급성기 뇌경색 환자의 사상체질별 혈중 Homocysteine 농도에 대한 단면적 연구)

  • Min, In-Kyu;Kim, Mi-Young;Choi, Won-Woo;Sun, Jong-Joo;Jung, Jae-Han;Hong, Jin-Woo;Na, Byong-Jo;Jung, Woo-Sang;Moon, Sang-Kwan;Cho, Ki-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.763-768
    • /
    • 2007
  • Objectives : This study aimed to clarify the difference in blood homocysteine levels of acute cerebral infarction patients categorized by Sasang constitutional medicine. Methods : The subjects were recruited from patients admitted to the Oriental Internal Medical Department at Kyunghee Medical Center between October 2005 and May 2007, who were classified as small vessel occlusion (SVO) patients according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST). The general characteristics along with total homocysteine levels were recorded and analyzed according to Sasang constitutional medicine. Results : A total of 151 patients were included in the trial. The prevalence of constitution was, in order, Soyangin, Taeumin, and Soeumin. No statistical significance was noted for any characteristic except body weight. There was no significant difference in blood homocysteine levels between constitutions. Conclusion : This study investigated the difference in blood homocysteine levels of acute cerebral infarction patients categorized according to Sasang constitutional medicine. Due to many limitations, the correlation between homocysteine levels and Sasang constitution was not clarified. Nevertheless, this study is significant in that it examined the largest study group to date in Oriental Medicine research history on the relation between stroke patients' homocysteine and Sasang constitution, and can be utilized in future as a basic material. Further research on the subject is needed.

  • PDF

Changes in Bypass Flow during Temporary Occlusion of Unused Branch of Superficial Temporal Artery

  • Kim, Joon-Young;Jo, Kwang-Wook;Kim, Young-Woo;Kim, Seong-Rim;Park, Ik-Seong;Baik, Min-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.2
    • /
    • pp.105-108
    • /
    • 2010
  • Objective : Some neurosurgeons intentionally ligate the branches of the superficial temporal artery (STA) that are not used in standard STA-to-middle cerebral artery (MCA) anastomosis for the purpose of improving the flow rate in the bypass graft. We investigated changes in bypass flow during temporary occlusion of such unused branches of the STA. Methods : Bypass blood flow was measured by a quantitative microvascular ultrasonic flow probe before and after temporary occlusion of branches of the STA that were not used for anastomosis. We performed measurements on twelve subjects and statistically assessed changes in flow. We also examined all the patients with digital subtraction angiography in order to observe any post-operative changes in STA diameter. Results : Initial STA flow ranged from 15 mL/min to 85 mL/min, and the flow did not change significantly during occlusion as compared with preocclusion flow. The occlusion time was extended by 30 minutes in all cases, but this did not contribute to any significant flow change. Conclusion : The amount of bypass flow in the STA seems to be influenced not by donor vessel status but by recipient vessel demand. Ligation of the unused STA branch after completion of anastomosis does not contribute to improvement in bypass flow immediately after surgery, and furthermore, carries some risk of skin necrosis. It is better to leave the unused branch of the STA intact for use in secondary operation and to prevent donor vessel occlusion.

Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향)

  • Lee, Hwan-Sung;Park, Sung-Joon;Jung, Kwang-Sik;Sohn, Young-Joo;Jung, Hyuk-Sang;Park, Dong-Il;Sohn, Nak-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

The Effect of Woohwangcheongsim-won on Circulatory Disturbance in Diabetes (우황청심원이 당뇨병 Rat의 혈액순환장애에 미치는 영향)

  • 황성록;정승현;신길조;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.164-179
    • /
    • 2002
  • Object: Death rate due to hypertension, atherosclerosis, ischemic heart disease and cerebral infarction induced by Westernized diet and increased average life span is on the rise. Decrease in blood circulation, activation of thrombus generation and intravascular lipid accumulation, cited as the principal causes of the above mentioned diseases in recent studies, result in circulatory disturbance and blood vessel obstruction leading to ischemic cell death of heart, brain and peripheral vessels. Method: We investigated the biochemical changes in microvascular permeability, aggregation of platelet and the intravascular lipid accumulation in induced-diabetic rat using Streptozotocin. We also studied the effects of Woohwangcheongsirn-won after oral administration on blood circulation, platelet function and lipid metabolism. The results are as follows: I. Woohwangcheongsim-won increased blood circulation in microvessels. 2. Woohwangcheongsim-won increased the reduced erythrocyte deformability in diabetes. 3. Woohwangcheongsim-won induced the reduction of contents of 2, 3-DPG, but failed to affect the reduced contents of ATP in erythrocyte in diabetes. 4. Woohwangcheongsim-won reduced the activity of Ca/sup 2+/-ATPase in the membrane of erythrocyte. 5. Woohwangcheongsim-won reduced the platelet aggregation evoked by platelet agglutinin factor. 6. Woohwangcheongsim-won reduced the production of platelet-derived granules. 7. Woohwangcheongsim-won reduced the production of metabolites of arachidonic acid in diabetes, and also reduced the production of increased thromboxane B2. 8. Woohwangcheongsim-won reduced the synthesis of oxidized LDL-cholesterol. In conclusion, Woohwangcheongsim-won enhanced blood circulation in microvesseles, erythrocyte deformability and inhibited the increased platelet aggregation and the synthesis of oxidized LDL-cholesterol in diabetes. Therefore Woohwangcheongsim-won is believed to positively affect blood circulation (J Korean Oriental Med 2002;23(2):164-179)

  • PDF

Computational Analysis of Impulse Forces Affecting Coil Compaction in Cerebral Aneurysms

  • Cha Kyung-Se;Balaras Elias
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.94-100
    • /
    • 2006
  • The effectiveness of the treatment of intracranial aneurysms with endovascular coiling depends on coil packing density, the location of aneurysm, its neck dimensions with respect to the aneurysm dome, and its size with respect to the surrounding tissue. Clinical data also suggests that the aneurysm neck size is the main predictor of aneurysm recanalization. In this study, the force impinging on the aneurysm neck in an idealized aneurysm was calculated by using a three dimensional finite volume method for the non-Newtonian incompressible laminar flow. To quantify the effect of neck size on the impingement force, calculations were performed for aneurysm neck diameters (Da) varying from 10% to 100% of the parent artery diameter (Dp). Also, maximum impingement forces were represented by a function of the ratio of the aneurysm neck to the diameter of the parent vessel. The results show that the hemodynamic forces exerted on the coil mass at the aneurysm neck due to the pulsatile blood flow are larger for wide necked aneurysms.

Pediatric Central Nervous System Vascular Malformation : Pathological Review with Diagram

  • Se Hoon Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.265-269
    • /
    • 2024
  • Pediatric central nervous system (CNS) vascular malformations are a group of abnormal blood vessel formations within the brain or spinal cord in children. The most crucial point of pediatric CNS vascular malformation is that no golden standard classifications exist. In addition, there is a big gap in knowledge and the viewpoint of clinicians, radiologists, and pathologists. In addition, many genes associated with pediatric CNS vascular malformation, such as Sturge-Weber-Dimitri syndrome with guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) gene mutation, and cavernous malformations with cerebral cavernous malformations 1 (CCM1), CCM2, and CCM3 gene mutation, were recently revealed. For proper therapeutic approaches, we must understand the lesions' characterizations in anatomical, morphological, and functional views. In this review, the author would like to provide basic pediatric CNS vascular malformation concepts with understandable diagrams. Thus, the author hopes that it might be helpful for the proper diagnosis and treatment of CNS pediatric vascular malformations.

Evolution of Low Wall-Shear Stress Area in Anterior Communicating Artery Aneurysm (전교통동맥류 내부 유동 전산해석을 통한 낮은 벽면 전단 응력 영역 발달 분석)

  • Guk, Yoonhyeok;Kwon, Taeho;Moon, Seongdeuk;Kim, Dongmin;Hwang, Jinyul;Bae, Youngoh
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.45-54
    • /
    • 2022
  • We analyzed the low wall-shear stress area in the intracranial aneurysm that occurred at an anterior communicating artery with a special emphasis on vortical structures close to the wall. We reconstructed the aneurysm model from patient CTA data. We assumed blood as an incompressible Newtonian fluid and treated the blood vessel as a solid wall. The pulsatile boundary condition was applied at the inlet of the anterior cerebral artery. From the instantaneous flow field, we computed the histogram of the wall-shear stress over the aneurysm wall and found the low wall-shear stress event (< 0.4 Pa). This extreme event was due to the low wall-shear stress area that occurred at the daughter sac. We found that the merging of two vortices induced the low wall-shear stress area; one arises from the morphological characteristics of the daughter sac, and the other is formed by a jet flow into the aneurysm sac. The latter approaches the daughter sac, which ultimately leads to the strong ejection event near the daughter sac.

Intraaneurysmal Blood Flow Changes for the Different Coil Locations (코일 위치에 따른 동맥류 내부 혈류유동의 변화)

  • 이계한;정우원
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.295-300
    • /
    • 2004
  • Coil embolization technique has been used recently to treat cerebral aneurysms. When a giant or a multilobular aneurysm are treated by roils, filling an aneurysm sac completely with coils is difficult and partial blocking of an aneurysm sac is inevitable. Blood flow characteristics, which nay affect the embolization process of an aneurysm sac, are changed by the locations of coils for the Partially blocked aneurysms. Blood flow fields are also influenced by the geometry of a parent vessel. In order to suggest the coil locations effective for aneurysm embolization, the blood flow fields of lateral aneurysm models were analyzed for the different coil locations and parent vessel geometries. Three dimensional pulsatile flow fields are analyzed by numerical methods considering non-Newtonian viscosity characteristics of blood. Flow rate into the aneurysm sac (inflow rate) and wall shear stress, which are suspected as flow dynamic factors influencing aneurysm embolization, are also calculated. Inflow rates were smaller and the low wall shear stress zones were larger in the neck blocked models compared to the dome blocked models. Smaller inflow and larger low wall shear stress zones in the distal neck blocked model imply that the distal neck should be the effective coil locations for aneurysm embolization.