DOI QR코드

DOI QR Code

Comparison of bone subtraction CT angiography with standard CT angiography for evaluating circle of Willis in normal dogs

  • Soyon An (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Gunha Hwang (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Rakhoon Kim (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Tae Sung Hwang (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Hee Chun Lee (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2023.04.27
  • Accepted : 2023.08.01
  • Published : 2023.09.30

Abstract

Background: Bone subtraction computed tomography angiography (BSCTA) is a useful alternative technique for improving visualization of vessels surrounded by skull bone. However, no studies have compared computed tomography angiography (CTA) and BSCTA for improving the visibility of canine cerebral blood vessels. Objectives: To evaluate the potential benefit of BSCTA for better delineation of brain arteries of the circle of Willis (CoW) in dogs by comparing BSCTA with non-subtraction computed tomography angiography (NSCTA). Methods: Brain CTA was performed for nine healthy beagle dogs using a bolus tracking method with saline flushing. A total dose of 600 mgI/kg of contrast agent with an iodine content of 370 mgI/mL was injected at a rate of 4 ml/s. Bone removal was achieved automatically by subtracting non-enhanced computed tomography (CT) data from contrast CT data. Five main intracranial arteries of the CoW were analyzed and graded on a scale of five for qualitative evaluation. Results: Scores of basilar artery, middle cerebral artery, and rostral cerebral artery in the BSCTA group were significantly higher than those in the NSCTA group (p = 0.001, p = 0.020, and p < 0.0001, respectively). Scores of rostral cerebellar artery (RcA) and caudal cerebral artery (CCA) did not differ significantly between the two groups. However, scores of RcA and CCA in the BSCTA group were higher than those in the NSCTA group. Conclusions: BSCTA improved visualization of intracranial arteries of the CoW with close contact to bone. Thus, it should be recommended as a routine scan method in dogs suspected of having brain vessel disease.

Keywords

Acknowledgement

We thank Canon Medical Systems Korea, especially Sean Kang (CT application specialist), for assistance with image acquisition and technical cooperation.

References

  1. Sager M, Assheuer J, Trummler H, Moormann K. Contrast-enhanced magnetic resonance angiography (CE-MRA) of intra- and extra-cranial vessels in dogs. Vet J. 2009;179(1):92-100. https://doi.org/10.1016/j.tvjl.2007.08.032
  2. Park S, Jang M, Lee K, Choi H, Lee Y, Park I, et al. Optimal placement of the region of interest for bolus tracking on brain computed tomography angiography in Beagle dogs. J Vet Med Sci. 2021;83(8):1196-1201. https://doi.org/10.1292/jvms.20-0724
  3. Jacqmot OD, Snaps FR, Maquet NM, Heinen MP, Gabriel AE. Arterial head vascularization cartographies of normal metencephalic dogs using magnetic resonance angiography. Anat Rec (Hoboken). 2011;294(11):1834-1841. https://doi.org/10.1002/ar.21479
  4. Tanaka T, Akiyoshi H, Mie K. Anatomical variations in the circle of Willis in canines. Anat Histol Embryol. 2018;47(6):609-612. https://doi.org/10.1111/ahe.12390
  5. Arnold SA, Platt SR, Gendron KP, West FD. Imaging ischemic and hemorrhagic disease of the brain in dogs. Front Vet Sci. 2020;7:279.
  6. Vali Y, Gielen I, Soroori S, Ludewig E. The diagnostic value of intravenous contrast computed tomography in addition to plain computed tomography in dogs with head trauma. BMC Vet Res. 2021;17(1):46.
  7. van Rooij WJ, Sprengers ME, de Gast AN, Peluso JP, Sluzewski M. 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol. 2008;29(5):976-979. https://doi.org/10.3174/ajnr.A0964
  8. Christenson PC, Ovitt TW, Fisher HD 3rd, Frost MM, Nudelman S, Roehrig H. Intravenous angiography using digital video subtraction: intravenous cervicocerebrovascular angiography. AJR Am J Roentgenol. 1980;135(6):1145-1152. https://doi.org/10.2214/ajr.135.6.1145
  9. Dawkins AA, Evans AL, Wattam J, Romanowski CA, Connolly DJ, Hodgson TJ, et al. Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures. Neuroradiology. 2007;49(9):753-759. https://doi.org/10.1007/s00234-007-0252-y
  10. Nagayama Y, Nakaura T, Tsuji A, Urata J, Furusawa M, Yuki H, et al. Cerebral bone subtraction CT angiography using 80 kVp and sinogram-affirmed iterative reconstruction: contrast medium and radiation dose reduction with improvement of image quality. Neuroradiology. 2017;59(2):127-134. https://doi.org/10.1007/s00234-016-1776-9
  11. Hartung MP, Grist TM, Francois CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson. 2011;13(1):19.
  12. Lin A, Rawal S, Agid R, Mandell DM. Cerebrovascular imaging: which test is best? Neurosurgery. 2018;83(1):5-18. https://doi.org/10.1093/neuros/nyx325
  13. Lell MM, Anders K, Uder M, Klotz E, Ditt H, Vega-Higuera F, et al. New techniques in CT angiography. Radiographics. 2006;26(1 Suppl 1):S45-S62. https://doi.org/10.1148/rg.26si065508
  14. de Lucas EM, Sanchez E, Gutierrez A, Mandly AG, Ruiz E, Florez AF, et al. CT protocol for acute stroke: tips and tricks for general radiologists. Radiographics. 2008;28(6):1673-1687. https://doi.org/10.1148/rg.286085502
  15. Lell M, Anders K, Klotz E, Ditt H, Bautz W, Tomandl BF. Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging. Eur Radiol. 2006;16(4):889-897. https://doi.org/10.1007/s0330-005-0032-1
  16. Hwang SB, Kwak HS, Han YM, Chung GH. Detection of intracranial aneurysms using three-dimensional multidetector-row CT angiography: is bone subtraction necessary? Eur J Radiol. 2011;79(2):e18-e23. https://doi.org/10.1016/j.ejrad.2010.01.004
  17. Tomandl BF, Hammen T, Klotz E, Ditt H, Stemper B, Lell M. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR Am J Neuroradiol. 2006;27(1):55-59.
  18. Goggs R, Chan DL, Benigni L, Hirst C, Kellett-Gregory L, Fuentes VL. Comparison of computed tomography pulmonary angiography and point-of-care tests for pulmonary thromboembolism diagnosis in dogs. J Small Anim Pract. 2014;55(4):190-197. https://doi.org/10.1111/jsap.12185
  19. Kishimoto M, Doi S, Shimizu J, Lee KJ, Iwasaki T, Miyake Y, et al. Influence of osmolarity of contrast medium and saline flush on computed tomography angiography: comparison of monomeric and dimeric iodinated contrast media with different iodine concentrations at an identical iodine delivery rate. Eur J Radiol. 2010;76(1):135-139. https://doi.org/10.1016/j.ejrad.2009.05.018
  20. Cassel N, Carstens A, Becker P. The comparison of bolus tracking and test bolus techniques for computed tomography thoracic angiography in healthy beagles. J S Afr Vet Assoc. 2013;84(1):E1-E9. https://doi.org/10.4102/jsava.v84i1.930
  21. Venema HW, den Heeten GJ. Subtraction helical CT angiography of intra- and extracranial vessels: technical considerations and preliminary experience--rediscovery of matched mask bone elimination? AJNR Am J Neuroradiol. 2003;24(7):1491-1492.
  22. Romijn M, Gratama van Andel HA, van Walderveen MA, Sprengers ME, van Rijn JC, van Rooij WJ, et al. Diagnostic accuracy of CT angiography with matched mask bone elimination for detection of intracranial aneurysms: comparison with digital subtraction angiography and 3D rotational angiography. AJNR Am J Neuroradiol. 2008;29(1):134-139. https://doi.org/10.3174/ajnr.A0741
  23. Wang H, Li W, He H, Luo L, Chen C, Guo Y. 320-detector row CT angiography for detection and evaluation of intracranial aneurysms: comparison with conventional digital subtraction angiography. Clin Radiol. 2013;68(1):e15-e20. https://doi.org/10.1016/j.crad.2012.09.001
  24. Morhard D, Fink C, Becker C, Reiser MF, Nikolaou K. Value of automatic bone subtraction in cranial CT angiography: comparison of bone-subtracted vs. standard CT angiography in 100 patients. Eur Radiol. 2008;18(5):974-982. https://doi.org/10.1007/s00330-008-0855-7
  25. Sarikaya B, Sarikaya S, Deniz FE, Acu B, Kablan Y, Firat MM. Unregistered subtracted CT angiography for the visualization of intracranial arteries at or near the skull base: preliminary experience. Diagn Interv Radiol. 2007;13(3):105-108.
  26. Jayakrishnan VK, White PM, Aitken D, Crane P, McMahon AD, Teasdale EM. Subtraction helical CT angiography of intra- and extracranial vessels: technical considerations and preliminary experience. AJNR Am J Neuroradiol. 2003;24(3):451-455.
  27. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-174. https://doi.org/10.2307/2529310
  28. Chappell ET, Moure FC, Good MC. Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: a meta-analysis. Neurosurgery. 2003;52(3):624-631. https://doi.org/10.1227/01.NEU.0000047895.82857.EB
  29. Venema HW, Hulsmans FJ, den Heeten GJ. CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination-feasibility study. Radiology. 2001;218(3):893-898. https://doi.org/10.1148/radiology.218.3.r01mr30893
  30. Schwartz RB, Tice HM, Hooten SM, Hsu L, Stieg PE. Evaluation of cerebral aneurysms with helical CT: correlation with conventional angiography and MR angiography. Radiology. 1994;192(3):717-722. https://doi.org/10.1148/radiology.192.3.8058939
  31. Imakita S, Onishi Y, Hashimoto T, Motosugi S, Kuribayashi S, Takamiya M, et al. Subtraction CT angiography with controlled-orbit helical scanning for detection of intracranial aneurysms. AJNR Am J Neuroradiol. 1998;19(2):291-295.
  32. Lell MM, Ruehm SG, Kramer M, Panknin C, Habibi R, Klotz E, et al. Cranial computed tomography angiography with automated bone subtraction: a feasibility study. Invest Radiol. 2009;44(1):38-43. https://doi.org/10.1097/RLI.0b013e31818c3d6b
  33. Shim J, Lee SH, Lee Y, Kim KB, Kim K. Metallic component preserving algorithm based on the cerebral computed tomography angiography in aneurysm surgery. Diagnostics (Basel). 2022;12(2):338-350. https://doi.org/10.3390/diagnostics12020338
  34. Sakamoto S, Kiura Y, Shibukawa M, Ohba S, Arita K, Kurisu K. Subtracted 3D CT angiography for evaluation of internal carotid artery aneurysms: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol. 2006;27(6):1332-1337.
  35. Li Q, Lv F, Li Y, Li K, Luo T, Xie P. Subtraction CT angiography for evaluation of intracranial aneurysms: comparison with conventional CT angiography. Eur Radiol. 2009;19(9):2261-2267. https://doi.org/10.1007/s00330-009-1416-4
  36. Sahel M, Ourrad E, Zouaoui A, Marro B, Sourour N, Biondi A, et al. 3D-CT angiography with volume rendering technique in the intracerebral aneurysms. J Radiol. 2000;81(2):127-132.