• Title/Summary/Keyword: Cerebral Cortex

Search Result 445, Processing Time 0.046 seconds

Effects of Imagery Tennis Training on Cerebral Activity

  • Jung, Seokwon;Choi, Min-sun;Kim, Min-uk;An, Hye-jin;Shin, Min-gyeong;Kwon, Oh-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.46-50
    • /
    • 2015
  • The previous studies showed that the visual imagery activated the occipital and posterior inferior temporal area of the brain, and the damage to the occipital cortex impaired the visual mental imagery. We studied current-source distribution of electroencephalography (EEG) to observe neuronal activity during imagery tennis playing. Eleven healthy volunteers were enrolled. All volunteers were right-handed males and novices for tennis playing. The mean age of them was 24.9 years. The EEGs were recorded on the scalp electrodes located according to the International 10~20 System. The number of electrodes was 25 channels including subtemporal electrodes. The EEG recording session was 13 min including 5 segments: resting-I, scenery-slide show, resting-II, watching tennis-game video, and imagery-tennis playing. The recoding durations were 3, 2, 3, 2, and 3 min respectively. Five 'artifact free 3-sec segments' were selected in each segment of 'imagery-tennis playing' and 'resting-II'. We did the frequency domain analysis with the EEG segments using a distributed model of current-source analysis. The statistical-nonparametric maps (SnPMs) were obtained between the segments of 'imagery-tennis playing' and the segments of 'resting-II' (p<0.01). The significant change of current-source density was observed only in alpha-2 frequency band (10~12 Hz). The current-sourcedensity was increased in the hippocampus, parahippocampus, and occipital fusiform gyrus in the right cerebral hemisphere (p<0.01). Imaginary-tennis playing may activate the hippocampal-occipital alpha networks of nondominant hemisphere.

Effect of Buthus on $Na^+-K^+-ATPase$ activity in cerebral synaptosomes (전갈(全蝎)이 뇌조직(腦組織)의 $Na^+-K^+-ATPase$ 활성(活性)에 미치는 영향(影響))

  • Yoon, Jong-Yeong;Shin, Hyeon-Chul;Yoon, Chul-Ho;Seo, Un-Kyo;Kim, Jong-Dae;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.431-441
    • /
    • 1998
  • This study was undertaken to determine whether Buthus exract(BTE) affects Na^+-K^+-ATPase$ activity of nervous tissues. The enzym activity was measured in synaptosomal fraction prepared from rabbit brain cortex. Na^+-K^+-ATPase$ activity was inhibited by BTE over concentration range of 0.05-0.5% in a dose-dependent manner. The enzyme activity was increased by an increase in $Na^+$ concentration from 5 to 100mM, $K^+$ concentration from 0.5 to 10mM, and $Mg^{2+}$ concentration from 0.2 to 5mM. These changes in ion concentrations did not produce any effect on the inhibitory effect of BTE on $Na^+-K^+-ATPase$ activity. An increase in ATP concentration from 0.1 to 3mM caused an increase in the enzyme activity. The inhibition of the enzyme activity by BTE were not different between two ATP concentrations. A sulfhydryl group protector DTT prevented PCMB-induced inhibition of $Na^+-K^+-ATPase$ activity, but the BTE-induced inhibition was not altered by DTT. The inhibition of enzyme activity by combination of ouabain and BTE was not different from that by Buthus alone. These results suggest that Buthus exerts inhibitory effect on $Na^+-K^+-ATPase$ activity in cerebral synaptosomes, and the action mechansim is similar to that of ouabain.

  • PDF

Reduced Regional Cerebral Blood Flow in Patients with Traumatic Brain Injury Who Had No Structural Abnormalities on Magnetic Resonance Imaging : A Quantitative Evaluation of Tc-99m-ECD SPECT Findings (정상 MRI 소견을 보이는 외상성 뇌손상 환자에서 국소뇌혈류량의 이상)

  • Kim, Nam-Hee;Chung, Young-Ki
    • Korean Journal of Biological Psychiatry
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2002
  • Background & Purpose:Neuropsychological disorders after traumatic brain injury(TBI) are poorly correlated with structural lesions detected by structural neuroimaging techniques such as computed tomography(CT) scan or magnetic resonance imaging(MRI). It is well known that patients with TBI have cognitive and behavioral disorders even in the absence of structural lesions of the brain. This study investigated whether there are abnormalities of regional cerebral blood flow(rCBF) in TBI patients without structural abnormality on MRI, using technetium 99m ethyl cysteinate dimer(Tc-99m-ECD) single photon emission computed tomography(SPECT) scans. Materials and Methods:Twenty-eight TBI patients without structural abnormality on MRI(mild, n=13/moderate, n=9/severe, n=6) and fifteen normal controls were scanned by SPECT. A voxel-based analysis using statistical parametric mapping(SPM) was performed to compare the patients with the normal controls. Results:rCBF was reduced in the right uncus and the right lateral orbitofrontal gyrus in the TBI patients. However, no increase of rCBF was noted in the patients in comparison to the normal controls. Conclusions:These results suggest that the TBI patients, even in the absence of structural lesion of the brain, may have dysfunction of the brain, particularly of the orbitofrontal and anterior pole of the temporal cortex. They also suggest that SPECT can be a useful method to identify brain dysfunctions in combination with structural brain imaging and neuropsychological tests.

  • PDF

Gait Characteristic in a Stroke Patient with an Intact Corticospinal Tract and Corticoreticular Pathway: A Case Study

  • Yeo, Sang Seok;Cho, In Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.2
    • /
    • pp.73-77
    • /
    • 2018
  • Purpose: The prefrontal lobe, supplementary motor area, cerebellum, and basal ganglia are activated during gait. In addition, gait is controlled by nerves, such as the corticospinal tract (CST) and corticoreticular pathway (CRP). In this study, the presence of an injury to the CST and CRP was identified by diffusion tensor imaging and the characteristics of the gait pattern were investigated according to inferior cerebral artery infarction. Methods: One patient and six control subjects of a similar age participated. A 69-year-old female patient had an injury to the left basal ganglia, insular gyrus, corona radiata, dorsolateral prefrontal cortex, and postcentral gyrus due to an inferior cerebral artery infarction. Diffusion tensor imaging (DTI) data was acquired 4 weeks after the stroke. The kinematic and spatio-temporal parameters of gait were collected using a three-dimensional gait analysis system. Results: On 4 weeks DTI, the CST and CRP in the affected hemisphere did not show injury to the affected and unaffected hemisphere. Gait analysis showed that the cadence of spatio-temporal parameter was decreased significantly in the patient. The angle of the knee joint was decreased significantly in the affected and unaffected sides compared to the control group. Conclusion: The results of diffusion tensor imaging showed that although the patient was evaluated to be capable of an independent gait, the quality and quantity of gait might be reduced. This study could help better understand the gait ability analysis of stroke patients and the abnormal gait pattern of patients with a brain injury.

Inhibitory Effect of Bee Venom on Lipopolysaccharide-induced Memorial Impairment and Acetylcholine Esterase, Secretase Activity

  • Kwon, Dae-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.33-46
    • /
    • 2006
  • Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disease associated with aging in the human population. This disease is characterized by the extracellular deposition of beta-amyloid peptide $(A{\beta})$ in cerebral plaques. $A{\beta}$ is derived from the ${\beta}-amyloid$ precursor protein (APP) by the enzymes, ${\beta}-$ and ${\eta}o-secretase$. Compounds that ${\beta}-$ or ${\eta}o-secretase$ inhibit activity, can reduce the production of $A{\beta}$ peptides, and thus have therapeutic potential in the treatment of AD. Increasing body of evidence has been demonstrated that Bee Venom(BV) Acupuncture could compete with complex protein involving in multiple step of $NF-{\kappa}B$ activation and exert the anti-inflammatory potential of combined inhibition of the prostanoid and nitric oxide synthesis systems by inhibition of IKK and $NF-{\kappa}B$. In this study, I investigated possible effects of BV on memory dysfunction caused by lipopolysaccharide (LPS) and $A{\beta}$ through inhibition of secretases activities and $A{\beta}$ aggregation. I examined the improving effect of BV on the LPS (2.5 mg/Kg, i.p.)-induced memory dysfunction using passive avoidance response and water maze tests in the mice. BV (0.84, $1.67\;{\mu}g/ml$) reversed the LPS-induced memorial dysfunction in dose dependent manner. BV also dose-dependently attenuated LPS-induced ${\beta}$ and ${\eta}o-secretase$ activities in cerebral cortex and hippocampus of the mice brain. This study therefore suggests that BV acupuncture method may be useful for prevention of development or progression of AD.

  • PDF

The Effect oi Saponin Fraction of Panax Ginsen C.A. Meyer on Aldehyde Dehydrogenase Activity in Neurons and Astrocytes Isolated from Ethanol Administered Rat Brain (인삼사포닌 분획이 에탄올을 투여한 쥐의 뇌에서 분리한 신경세포와 Astrocyte의 Aldehyde Dehydrogenase 활성에 미치는 영향)

  • Lee, Myeong-Don;Hwang, U-Seop;Seo, Hae-Yeong
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • The changes in aldehyde dehydrogenase(ALDH, E.C. 1.2.1.3.) activity in neurons and astrocytes isolated from rat brains were investigated after administration of ethanol and Korean red ginseng(Panax ginseng C.A. Meyer) saponln. The cerebral ALDH activity with acetaldehyde and Propionaldehyde was higher in the white matter than in the gray matter. However, using indole-3-a-cetaldehyde and 3,4-dihydroxyphenylacetaldehyde as substrates, there was no significant difference in activity between two regions in cerebrum. In ethanol treated group, ALDH activity with all the substrates in the gray and white matter was lower than in normal group. In ethanol-saponin treated group, the enzyme activity in the white matter remarkably Increased. The ALDH activity in neurons isolated from cerebral cortex in ethanol-treated group was lower than in normal group. In ethanol-saponin treated group, neuronal ALDH activity with propionaldehyde was significantly recovered but not with Indole-3-acetaldehyde. In astrocytes, although the ALDH activity with propionaldehyde in the ethanol-treated group was not changed as compared with normal group, considerable increase in activity was found in ethanol-saponin treated group. These results suggest that Korean red ginseng saponin may protect the neuronal functions from the toxic effects of acetaldehyde derived from ethanol by stimulation of ALDH activity in astrocytes surrounding nerve cells.

  • PDF

Hyperacute Radiation Effect on Cerebral Cortex after Local Gamma-irradiation in the Rat Brain (단일 국소방사선 조사 후 백서 대뇌 피질의 초급성기 변화에 대한 연구)

  • Kang, Shin-Hyuk;Chung, Yong-Gu;Kim, Han-Kyum;Kim, Chul-Yong;Lee, Hoon-Kap
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.5
    • /
    • pp.370-374
    • /
    • 2005
  • Objective: We investigated the morphologic changes within 24 hours after a single ${\gamma}$-irradiation in the rat brain. Methods: Forty Sprague-Dawley rats were used. After a burr hole trephination on right parietal area, cerebral hemisphere was irradiated with 2Gy and 5Gy using iridium-192($^{192}Ir$), respectively. The effect was assessed at 4, 8, 12 and 24 hours after irradiation. The histological changes were scored following the detection of edema or disarray severity. TUNEL-positive cells exhibiting apoptotic morphology were counted in irradiated region. Results: Cortical edema and disarray were initially showed at 4 or 8 hour and almost all defined at 24 hour after irradiation. And the injury was wedge shape. TUNEL-positive cells were minimal at 8 hour after irradiation as the number of positive cells were $2.6{\pm}5.27$(n=5) after 2Gy, and $0.8{\pm}0.84$(n=5) after 5Gy. But, the number of apoptotic cells were increased markedly to $60{\pm}6.24$ at 12 hour after 2Gy and to $104{\pm}19.7$ at 24 hour after 5Gy. Conclusion: There were prominent morphologic changes immediately after ${\gamma}$-irradiation. And, apoptosis was increased according to the time period. These findings implicate that brain irradiation induces rapid apoptotic change, which may play an important role in the pathogenesis of radiation-induced pathologic conditions.

Gray Matter Volume Reductions Were Associated with TPH1 Polymorphisms in Depressive Disorder Patients with Suicidal Attempts

  • Lee, Sang Min;Lee, Soyoen;Kang, Won Sub;Jahng, Geon-Ho;Park, Hae Jeong;Kim, Su Kang;Park, Jin Kyung
    • Psychiatry investigation
    • /
    • v.15 no.12
    • /
    • pp.1174-1180
    • /
    • 2018
  • Objective Structural changes of brain areas have been reported in depressive disorder and suicidal behavior (SB), in which TPH1 also has been known as a promising candidate gene. We investigated gray matter volume (GMV) differences, TPH1 rs1800532 and rs1799913 polymorphisms previously found to be associated with depressive disorder and SB, and the relationship between the two markers. Methods Thirteen depressive disorder patients with suicidal attempts (SA) and twenty healthy controls were included. We examined GMV differences using a voxel-based morphometry and regions of interest analysis. Direct sequencing was used for genotyping. Results The patients showed significant GMV reduction in left cerebral region including middle frontal gyrus, inferior frontal gyrus, and anterior cingulate cortex; in right middle temporal gyrus; in left cerebellar tonsil; and in right cerebral region including precentral gyrus and postcentral gyrus (corrected p<0.005). The right precentral and postcentral gyri GMV values of AA and CA genotypes patients were significantly decreased compared to those of CC genotype subjects (corrected p=0.040). Conclusion These findings show the possibility that both GMV reductions and TPH1 rs1800532/rs1799913 A allele may be involved in the pathogenesis of depressive disorder patients with SA.

Chlorogenic acid alleviates the reduction of Akt and Bad phosphorylation and of phospho-Bad and 14-3-3 binding in an animal model of stroke

  • Murad-Ali, Shah;Ju-Bin, Kang;Myeong-Ok, Kim;Phil-Ok, Koh
    • Journal of Veterinary Science
    • /
    • v.23 no.6
    • /
    • pp.84.1-84.15
    • /
    • 2022
  • Background: Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. Objectives: The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. Methods: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. Results: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. Conclusions: The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.

Effects of Salviae Miltiorrhizae Radix on Blood-Brain Barrier Impairment of ICH-Induced Rats (단삼(丹蔘)이 뇌조직출혈 흰쥐의 혈액뇌관문 손상에 미치는 영향)

  • Park, Chang-Hoon;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2014
  • Objectives : This study was performed in order to evaluate the effects of Salviae Miltiorrhizae Radix (SMR) water extract against the cerebral hemorrhage and the blood-brain barrier (BBB) impairment in the intracerebral hemorrhage (ICH). Method : ICH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type IV in Sprague-Dawley rats. SMR was orally given three times every 20 hours during 3 days after the ICH induction. Hematoma volume, water content of brain tissue and volume of evans blue leakage were examined. Myeloperoxidase (MPO) positive neutrophils and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) were observed with immunofluorescence labeling and confocal microscope. Results : SMR significantly reduced the hematoma volume of the ICH-induced rat brain. SMR significantly reduced the water content of brain tissue of the ICH-induced rat brain. SMR reduced the percentage of the evans blue leakage around the hematoma on the caudate putamen compared to the ICH group, especially on the cerebral cortex. SMR significantly reduced the volume of the evans blue leakage level in the peri-hematoma regions of the ICH-induced rat brain. SMR significantly reduced MPO positive neutrophils in the peri-hematoma regions of the ICH-induced rat brain. SMR reduced the TNF-${\alpha}$ expression in peri-hematoma regions of the ICH-induced rat brain. TNF-${\alpha}$ immuno-labeled cells were coincided with MPO immuno-labeled neutrophils in peri-hematoma regions of the ICH-induced rat brain. Conclusion : These results suggest that SMR plays a protective role against the blood-brain barrier impairment in the ICH through suppression of inflammation in the rat brain tissues.