• Title/Summary/Keyword: Ceramide.

Search Result 239, Processing Time 0.037 seconds

Heat Shock Protein 60 Is a $Mg^{2+}$-dependent, Membrane-associated and Neutral Sphingomyelinase That Mediates TNF-alpha Signaling

  • Jung, Sang-Mi;Jung, Sung-Yun;Chang, Dong-Hoon;Jeong, Hyun-Chul;Chin, Mi-Reyoung;Jeong, Eui-Man;Jo, Dong-Hwan;Jeon, Hyung-Jun;Jung, Kwnag-Mook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.103.2-103.2
    • /
    • 2003
  • The hydrolysis of sphingomyelin (SM), known as the SM pathway, is induced by the activation of sphingomyelinase (SMase) to generate the second messenger ceramide, which plays a key role in cellular responses such as apoptosis, differentiation, senescence, and inflammation. Here, we identified a 60 kDa membrane-associated, neutral and Mg$\^$2+/-dependent SMase, termed N-SMase $\varepsilon$, from mammalian brains, which was revealed as the heat shock protein 60 (HSP60) through cDNA cloning and mass spectrometrical analysis. (omitted)

  • PDF

Acid sphingomyelinase inhibition alleviates muscle damage in gastrocnemius after acute strenuous exercise

  • Lee, Young-Ik;Leem, Yea-Hyun
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2019
  • [Purpose] Strenuous exercise often induces skeletal muscle damage, which results in impaired performance. Sphingolipid metabolism contributes to various cellular processes, including apoptosis, stress response, and inflammation. However, the relationship between exercise-induced muscle damage and ceramide (a key component of sphingolipid metabolism), is rarely studied. The present study aimed to explore the regulatory role of sphingolipid metabolism in exercise-induced muscle damage. [Methods] Mice were subjected to strenuous exercise by treadmill running with gradual increase in intensity. The blood and gastrocnemius muscles (white and red portion) were collected immediately after and 24 h post exercise. For 3 days, imipramine was intraperitoneally injected 1 h prior to treadmill running. [Results] Interleukin 6 (IL-6) and serum creatine kinase (CK) levels were enhanced immediately after and 24 h post exercise (relative to those of resting), respectively. Acidic sphingomyelinase (A-SMase) protein expression in gastrocnemius muscles was significantly augmented by exercise, unlike, serine palmitoyltransferase-1 (SPT-1) and neutral sphingomyelinase (N-SMase) expressions. Furthermore, imipramine (a selective A-SMase inhibitor) treatment reduced the exercise-induced CK and IL-6 elevations, along with a decrease in cleaved caspase-3 (Cas-3) of gastrocnemius muscles. [Conclusion] We found the crucial role of A-SMase in exercise-induced muscle damage.

Research Trends in the Development of Cosmetic Ingredients for Skin Barrier Improvement

  • Hyung-Bum Park;Jeong-Yeon Park
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1445-1453
    • /
    • 2023
  • In 2022, the domestic production performance of functional cosmetics in South Korea reached 4.6 trillion won, accounting for 33.85% of the total cosmetics production. The number of functional cosmetics reviewed increased by about 7.5% from the previous year, totaling 974 items. Especially with the increasing importance of the skin barrier function due to skin sensitivity caused by various environmental pollutants, domestic cosmetic companies are showing interest in the development of new ingredients and products related to this area. This study aims to analyze academic research trends related to in vitro experiments for the development of cosmetics improving the skin barrier, to provide practical information for the cosmetic industry. The findings are as follows: Academic research mainly focused on the efficacy of natural ingredients in improving the skin barrier, but there is a significant lack of quantitative accumulation of research. For the development of skin barrier-improving cosmetic ingredients, efficacy evaluation indicators were set, including hyaluronic acid production, expression of filaggrin gene, loricrin, formation of cornified envelope (CE), and expression of ceramide synthesis enzyme genes. Moreover, effective cosmetic ingredients for improving the skin barrier included lemongrass and perilla leaf extracts, flavonoids, Lactococcus lactis subsp. lactis, Exosomelike Nanovesicles derived from apple callus, Eleutherococcus sessiliflorus, Acanthopanax sessiliflorus, Eleutherococcus gracilistylus, Acer okamotoanum extracts, Aloe vera adventitious root extract, ethanol extract of Aruncus dioicus, and organic solvent fraction of Dracocephalum argunense.

Effect of Ionizing Radiation and Mercury Chloride (II) on Cell Morphology in Yeast Cells Frequently and Temporarily Treated with Both Stressors (방사선과 염화수은의 일시 및 반복 복합 처리된 효모세포의 산화적 스트레스 적응과 형태 변화)

  • Kim, Su-Hyoun;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. Ionizing radiation (IR) is an active tool for destruction of cancer cells and diagnosis of diseases, etc. IR induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm and nucleus. Yeasts have been a commonly used material in biological research. In yeasts, the physiological response to changing environmental conditions is controlled by the cell types. Growth rate, mutation and environmental conditions affect cell size and shape distributions. In this work, the effect of IR and mercury chloride (II) on the morphology of yeast cells were investigated. Saccharomyces cerevisiae cells were treated with IR, mercury chloride (II) and IR combined with mercury chloride (II). Non-treated cells were used as a control group. Morphological changes were observed by a scanning electron microscope (SEM). The half-lethal condition from the previous experimental results was used to the IR combined with mercury. Yeast cells were exposed to 400 and 800 Gy at dose rates of 400Gy $hr^{-1}$ or 800 Gy $hr^{-1}$, respectively. Yeast cells were treated with 0.05 to 0.15 mM mercury chloride (II). Oxidative stress can damage cellular membranes through a lipidic peroxidation. This effect was detected in this work, after treatment of IR and mercury chloride (II). The cell morphology was modified more at high doses of IR and high concentrations of mercury chloride(II). IR and mercury chloride (II) were of the oxidative stress. Cell morphology was modified differently according to the way of oxidative stress treatment. Moreover, morphological changes in the cell membrane were more observable in the frequently stress treated cells than the temporarily stress treated cells.

Effect of Oral Administration of Lactobacillus plantarum HY7714 on Epidermal Hydration in Ultraviolet B-Irradiated Hairless Mice

  • Ra, Jehyeon;Lee, Dong Eun;Kim, Sung Hwan;Jeong, Ji-Woong;Ku, Hyung Keun;Kim, Tae-Youl;Choi, Il-Dong;Jeung, Woonhee;Sim, Jae-Hun;Ahn, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1736-1743
    • /
    • 2014
  • In this study, we evaluated the effect of Lactobacillus plantarum HY7714 on skin hydration in human dermal fibroblasts and in hairless mice. In Hs68 cells, L. plantarum HY7714 not only increased the serine palmitoyltransferase (SPT) mRNA level, but also decreased the ceramidase mRNA level. In order to confirm the hydrating effects of L. plantarum HY7714 in vivo, we orally administered vehicle or L. plantarum HY7714 at a dose of $1{\times}10^9CFU/day$ to hairless mice for 8 weeks. In hairless mice, L. plantarum HY7714 decreased UVB-induced epidermal thickness. In addition, we found that L. plantarum HY7714 administration suppressed the increase in transepidermal water loss and decrease in skin hydration, which reflects barrier function fluctuations following UV irradiation. In particular, L. plantarum HY7714 administration increased the ceramide level compared with that in the UVB group. In the experiment on SPT and ceramidase mRNA expressions, L. plantarum HY7714 administration improved the reduction in SPT mRNA levels and suppressed the increase in ceramidase mRNA levels caused by UVB in the hairless mice skins. Collectively, these results suggest that L. plantarum HY7714 can be a potential candidate for preserving skin hydration levels against UV irradiation.

Antiviral Efficacy of a Short PNA Targeting microRNA-122 Using Galactosylated Cationic Liposome as a Carrier for the Delivery of the PNA-DNA Hybrid to Hepatocytes

  • Kim, Hyoseon;Lee, Kwang Hyun;Kim, Kyung Bo;Park, Yong Serk;Kim, Keun-Sik;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.735-742
    • /
    • 2013
  • Peptide nucleic acids (PNAs) that bind to complementary nucleic acid sequences with extraordinarily high affinity and sequence specificity can be used as antisense oligonucleotides against microRNAs, namely antagomir PNAs. However, methods for efficient cellular delivery must be developed for effective use of PNAs as therapeutic agents. Here, we demonstrate that antagomir PNAs can be delivered to hepatic cells by complementary DNA oligonucleotide and cationic liposomes containing galactosylated ceramide and a novel cationic lipid, DMKE (O,O'-dimyristyl-N-lysyl glutamate), through glycoprotein-mediated endocytosis. An antagomir PNA was designed to target miR-122, which is required for translation of the hepatitis C virus (HCV) genome in hepatocytes, and was hybridized to a DNA oligonucleotide for complexation with cationic liposome. The PNA-DNA hybrid molecules were efficiently internalized into hepatic cells by complexing with the galactosylated cationic liposome in vitro. Galactosylation of liposome significantly enhanced both lipoplex cell binding and PNA delivery to the hepatic cells. After 4-h incubation with galactosylated lipoplexes, PNAs were efficiently delivered into hepatic cells and HCV genome translation was suppressed more than 70% through sequestration of miR-122 in cytoplasm. PNAs were readily released from the PNA-DNA hybrid in the low pH environment of the endosome. The present study indicates that transfection of PNA-DNA hybrid molecules using galactosylated cationic liposomes can be used as an efficient non-viral carrier for antagomir PNAs targeted to hepatocytes.

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and E and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then the on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to form a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5:1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin's moisture. Vitamins A and E contribute to preventing skin aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer. The crystalline structures of gel were surface-chemically-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC. Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Daegeon and Pusan in Korea and Hokkaido, Osaka and Miyazaki in Japan with correlation to the climate.

  • PDF

Identification of Three Competitive Inhibitors for Membrane­Associated, $Mg^{2+}-Dependent$ and Neutral 60 kDa Sphingomyelinase Activity

  • Kim Seok Kyun;Jung Sang Mi;Ahn Kyong Hoon;Jeon Hyung Jun;Lee Dong Hun;Jung Kwang Mook;Jung Sung Yun;Kim Dae Kyong
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.923-929
    • /
    • 2005
  • Methanol extracts of domestic plants of Korea were evaluated as a potential inhibitor of neutral pH optimum and membrane-associated 60 kDa sphingomyelinase (N-SMase) activity. In this study, we partially purified N-SMase from bovine brain membranes using ammonium sulfate. It was purified approximately 163-fold by the sequential use of DE52, Butyl-Toyopearl, DEAE-Cellulose, and Phenyl-5PW column chromatographies. The purified N-SMase activity was assayed in the presence of the plant extracts of three hundreds species. Based on the in vitro assay, three plant extracts significantly inhibited the N-SMase activity in a time- and concentration-dependent manner. To further examine the inhibitory pattern, a Dixon plot was constructed for each of the plant extracts. The extracts of Abies nephrolepis, Acer tegmentosum, and Ginkgo biloba revealed a competitive inhibition with the inhibition constant (Ki) of $11.9 {\mu}g/mL,\;9.4{\mu}g/mL,\;and\;12.9{\mu}g/mL$, respectively. These extracts also inhibited in a dose-dependent manner the production of ceramide induced by serum deprivation in human neuroblastoma cell line SH-SY5Y.

RETINOL STABILIZATION BY PSEUDO-LIPOSOME AND LAMELLAR LIQUID CRYSTAL

  • Lee, Seung-Ji;Jo, Byoung-Kee;Lee, Young-Jin;Ryu, Chang-Suk;Kim, Beom-Jun;Suk, Chang-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.116-122
    • /
    • 1998
  • It is well known that all-trans-retinol is not only very unstable in heat, light, air, and water, but also skin-irritant despite a good anti-wrinkle effect. Therefore, it is very difficult to stabilize retinol and make the safe retinol containing cosmetics by using a certain concentration of retinol with real effect. In order to dissolve these problems and apply retinol for skin care cream, firstly retinol is to be encapsulated in the vesicle called Liposphere (pseudo-liposome) which is made by homogenizing under high pressure the mixtures of lecithin, retinol, caprylic/capric triglyceride, and hydroalcoholic solution ; and then this retinol containing Liposphere is to be intercalated in lamellar liquid crystal layer which is prepared by emulsifying in an optimal ratio the mixtures composed of non-ionic emulsifier (cetearyl glucoside, sorbitan stearate & sucrose cocoate etc), cetearyl alcohol, stearic acid, cholesterol, and ceramide. In addition, the stability of the retinol containing oil in water cream by adding the polymeric emulsifier such as acrylate /C10-30 alkyl alkylate crosspolymer is to be ensured even at 55 C. Retinol containing oil in water cream prepared through above procedure could be very stable at 45 C for at least 50 days. The structure identification of lamellar liquid crystal was determined using polarized light microscope and electron microscope Conclusively, we could make the very stable retinol containing oil in water cream by triple procedure, that is, encapsulation of retinol in Liposphere, intercalation of retinol in lamellar liquid crystal layer, and assurance of the high temperature stability of cream even at 55 C.

  • PDF

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and I and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have ·to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then tile on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to from a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5 : 1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin’s moisture. Vitamins A and I contribute to preventing skin’aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer, The crystal 1 me structures of gel were surface-chemical1y-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC, Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Baegeon and Pusan in Korea and Hokkaido, Oska and Miyazaki in Japan with correlation to the climate.

  • PDF