• Title/Summary/Keyword: Ceramics material

Search Result 1,793, Processing Time 0.027 seconds

Effect According to Additive (Bi0.5Na0.5)TiO3 in BT-BNT System (BT-BNT계에서 (Bi0.5Na0.5)TiO3 첨가에 따른 효과)

  • Lee, Mi-Jai;Paik, Jong-Hoo;Kim, Sei-Ki;Kim, Bit-Nam;Lee, Woo-Yong;Lee, Kyung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Lead free positive temperature coefficient of resistivity (PTCR) ceramics based on $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ solid solution were prepared by a conventional solid state reaction method. The phase structure was showed single phase with perovskite structure regardless calcinations temperature and $Ba_{1-x}(Bi_{0.5}Na_{0.5})_xTiO_3$ structure was transformed from tetragonal to orthorhombic phase at $x{\geq}0.15$ mole. The XRD peaks with $45^{\circ}{\sim}46^{\circ}$ shifted in right the influence of crystal structure change and the intensity of peak was decreased with additive $(Bi_{0.5}Na_{0.5})TiO_3$. The curie temperature risen with additive $(Bi_{0.5}Na_{0.5})TiO_3$ but disappeared for $(Bi_{0.5}Na_{0.5})TiO_3$ addition more than 0.15 mole in TMA. In relative permittivity, the curie temperature by the transform of ferroelectric phase risen with additive $(Bi_{0.5}Na_{0.5})TiO_3$ but decreased in relative permittivity. Also, the peak of new curie temperature showed the sample containing $0.025{\sim}0.045$ mole of $(Bi_{0.5}Na_{0.5})TiO_3$ near $70^{\circ}C$ caused by phase transform from ferroelectric to ferroelectric and the peak of new curie temperature disappeared at 0.045 mole of $(Bi_{0.5}Na_{0.5})TiO_3$. In our study, it was found that the PTCR in $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ system was possible for $0{\sim}0.025$ mole of $(Bi_{0.5}Na_{0.5})TiO_3$ and the maximum curie temperature by phase transition showed about at $145^{\circ}C$.

Annealing Effect and Tunability of BaZr0.08Ti0.92O3 Polycrystal Grown in N2 Gas Atmosphere by Floating Zone Technique (Floating Zone Technique법으로 질소분위기 하에서 성장한 BaZr0.08Ti0.92O3 다결정의 Tunability 및 열처리 효과)

  • Hwang, Ho-Byong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1178-1185
    • /
    • 2004
  • In the atmosphere of $N_2$ gas, BaZ $r_{0.08}$ $Ti_{0.92}$ $O_3$ polycrystal was grown by floating zone technique using BaZ $r_{0.08}$ $Ti_{0.92}$ $O_3$ ceramics as a feed and SrTi $O_3$(1l0) single cystal as a seed. The dielectric constant and loss at 10 kHz, 100 kHz, and 1 MHz for the as-grown sample were measured as a function of temperature in the temperature range between -10$0^{\circ}C$ and 150 $^{\circ}C$ to find a dielectric peak with frequency dispersion at Curie point. The hysteresis loop showed that the grown sample had very small polarization which was 0-0.01 $\mu$C/$\textrm{cm}^2$ for the applied dc-electric fields from -7 kV/cm to +7 kV/cm. However, the normal hysteresis loop was appeared after oxygen annealing. The electric-field dependence of the dielectric constant for both the as-grown and the post-annealed samples was studied by measuring the dielectric constants as a function of the biased-electric fields and their tunability was figured out from it at room temperature(27 $^{\circ}C$) and cryotemperature( -73$^{\circ}C$). Tunability for the as-grown sample was 51 % and the figure of merit 20.4 at 10kHz with the biased electric-field of 12 kV/cm. The tunability for the grown sample may be increased up to 80 % if the electric field of 25 kV/cm is applied. Tunability for the post-annealed sample was 41 % and the figure of merit 10.3 at 10 kHz with the biased electric-field of 12 kV /cm. Post-annealing improved the crystallinity of the as-grown sample but decreased its tunability.ability.

다층 PNN-PZT/Ag 복합체의 동시 소성을 위한 압전세라믹스의 저온소결 및 압전특성 평가

  • Lee, Myeong-U;Son, Yong-Ho;Kim, Seong-Jin;Yun, Man-Sun;Ryu, Seong-Rim;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-295
    • /
    • 2007
  • 기계적 에너지를 전기적 에너지로 변화하는 에너지 변환소자인 압전 세라믹스는 액츄에이터, 변압기, 초음파모터, 초음파 소자 및 각종 센서로 응용되고 있으며, 그 응용분야는 크게 증가하고 있다. 최근 이러한 에너지 변화 소자는 앞으로 도래하는 ubiquitous, 무선 모바일 시대의 휴대용 전자제품, robotics, 항공우주, 자동차, 의료, 건축, MEMS 분야 등의 대체 에너지원으로 응용하기 위한 연구가 진행되고 있다. 특히 인간의 동작 등과 같은 일상적인 동작으로 필요한 전력을 얻을 수 있고, 세라믹 소자를 이용하기 때문에 전자노이즈가 발생되지 않을 뿐 아니라 반영구적으로 사용할 수가 있어서, 기존 이차전지, 연료전지를 대체 또는 보완 할 수 있는 방안도 검토되고 있다. PZT계 세라믹스는 높은 유전상수와 압전특성으로 전자세라믹스분야에서 가장 널리 사용되어지고 있지만 $1200^{\circ}C$이상의 높은 소결온도 때문에 $1000^{\circ}C$ 부근에서 급격히 휘발되는 PbO로 인한 환경오염과 기본조성의 변화로 인한 압전 특성의 저하가 문제시되고 있다. 또한, 적층 세라믹스의 제작 시 구조적 특성상 내부 전극이 도포된 상태에서 동시 소결이 필요한데, 융점이 낮은 Ag전극 대신 값비싼 Pd나 Pt가 다량 함유된 Ag/Pd, Ag/Pt 전극이 사용되고 있어 경제적인 문제가 발생하게 된다. 따라서 순수 Ag 전극을 사용하거나, Ag의 비율이 높은 내부 전극을 사용하기 위해서는 $950^{\circ}C$ 이하에서 소결되는 압전 세라믹스를 개발 하는 것이 필요하다. 따라서 본 연구에서는 압전특성이 우수한 $(Pb_{1-x}Cd_x)\;[(Ni_{1/3}/Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}]O_3$계의 조성을 설계하여, 소결온도를 낮추기 위해서 2단계 하소법을 이용하였다. 분말을 ball milling을 통해 24시간 동안 혼합하였다. 혼합된 분말은 $800^{\circ}C$에서 2시간 동안 하소하였다. 하소한 분말을 72시간 동안 ball milling 하여 최종 분말을 얻었다. 최종 분말에 PVB를 첨가하여 ${\Phi}21$ disk 형태로 성형한 후, $800{\sim}950^{\circ}C$ 소결을 하였다. 최종 분말 및 소결된 시편을 XRD분석을 통하여 상을 확인하였고, SEM을 이용하여 미세조직을 관찰하였다. 전기적 특성을 확인하기 위하여 두께 1mm로 연마한 시편에 Ag 전극을 도포하여 열처리한 후, 분극 처리하였다. 압전특성은 $d_{33}$ 미터로 측정하였고, impedance analyzer를 이용하여 주파수 및 impedance 특성을 측정하였다. 그 결과 $900^{\circ}C$에서 우수한 압전 특성 및 전기적 특성을 확보 할 수 있었다.

  • PDF

Low Temperature Sintering and Piezoelectric Properties of $Al_2O_3$, CuO and $MnO_2$ Added $Pb(Zr_xTi_{1-x})O_3-Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Ni_{1/3}Nb_{2/3})O_3$ Ceramics ($Al_2O_3$, CuO와 $MnO_2$가 첨가된 $Pb(Zr_xTi_{1-x})O_3-Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Ni_{1/3}Nb_{2/3})O_3$ 유전체의 저온 소결 및 압전 특성)

  • Ahn, Cheol-Woo;Park, Seung-Ho;Priya, Shashank;Uchino, Kenji;Song, Jae-Sung;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.138-141
    • /
    • 2004
  • [ $MnO_2$ ]가 첨가된 $0.9Pb(Zr_{0.5}Ti_{0.5})O_3-0.2Pb[(Zn_{0.8}Ni_{0.2})_{1/3}Nb_{2/3}]O_3$(0.8PZT-0.2PZNN) 세라믹스는 그 압전특성과 유전특성이 뛰어나지만 $1000^{\circ}C$ 이하의 낮은 소결 온도에서는 소결되지 않는다. $1000^{\circ}C$이하의 낮은 소결온도에서 소결하기 위해 CuO를 첨가한 결과, 소결온도 $920^{\circ}C$에서 소결성은 우수하였으나 그 압전 특성의 저하가 두드러졌다. 이는 XRD에서 확인한 결과에 따르면 CuO의 첨가가 우수한 MPB 조성으로 판명된 $MnO_2$ 가 첨가된 0.8PZT-0.2PZNN 세라믹스의 결정구조를 Rhombohedral 구조로 바꾸기 때문인 것으로 보였으며 이러한 문제는 PZNN의 비율을 조절하여 0.875PZT-0.125PZNN 세라믹스를 선택함으로 인해 해결할 수 있었다. 그러나 여전히 낮은 $Q_m$값을 높이기 위해서 $Al_2O_3$를 첨가하였고 그 결과 시편의 tetragonality 감소와 $Q_m$값의 증가를 확인할 수 있었으나 그 첨가량이 0.2wt% 이상일 경우에는 밀도의 감소로 인한 압전특성의 저하가 나타났다. 밀도의 향상을 위해 Zn and Ni excess 조성을 선택하였고 그 결과 0.5wt% $MnO_2$와 0.2wt% CuO 그리고 0.3wt% $Al_2O_3$를 첨가한 0.875PZT-0.125PZNN 세라믹스(Zn and Ni excess 조성)를 $920^{\circ}C$에서 소결한 경우 $k_p=0.581,\;Q_m=809,\;d_{33}=345\;pC/N\;and\;{\varepsilon}_{33}/{\varepsilon}_0=1345$의 빼어난 압전 및 유전특성과 $330^{\circ}C$의 높은 $T_c$를 보였고 그 조성의 vibration velocity는 약4.5 m/s로 나타났다.

  • PDF

Optimization of Crack-Free Polytypoidally Joined Dissimilar Ceramics of Functionally Graded Material (FGM) Using 3-Dimensional Modeling (폴리타이포이드 경사 방식으로 접합 된 이종 세라믹간의 적층 수의 최적화 및 잔류응력 해석에 대한 연구)

  • Ryu, Sae-Hee;Park, Jong-Ha;Lee, Sun-Yong;Lee, Jae-Sung;Lee, Jae-Chul;Ahn, Sung-Hoon;Kim, Dae-Keun;Chae, Jae-Hong;Riu, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.547-551
    • /
    • 2008
  • Crack-free joining of $Si_3N_4\;and\;Al_2O_3$ using 15 layers has been achieved by a unique approach introducing Sialon polytypoids as a functionally graded materials (FGMs) bonding layer. In the past, hot press sintering of multilayered FGMs with 20 layers of thickness $500{\mu}m$ each has been fabricated successfully. In this study, the number of layers for FGM was reduced to 15 layers from 20 layers for optimization. For fabrication, model was hot pressed at 38 MPa while heating up to $1700^{\circ}$, and it was cooled at $2^{\circ}$/min to minimize residual stress during sintering. Initially, FGM with 15 layers had cracks near 90 wt.% 12H / 10 wt.% $Al_2O_3$ and 90 wt.% 12H/10 wt.% $Si_3N_4$ layers. To solve this problem, FEM (finite element method) program based on the maximum tensile stress theory was applied to design optimized FGM layers of crack free joint. The sample is 3-dimensional cylindrical shape where this has been transformed to 2-dimensional axisymmetric mode. Based on the simulation, crack-free FGM sample was obtained by designing axial, hoop and radial stresses less than tensile strength values across all the layers of FGM. Therefore, we were able to predict and prevent the damage by calculating its thermal stress using its elastic modulus and coefficient of thermal expansion. Such analyses are especially useful for FGM samples where the residual stresses are very difficult to measure experimentally.

Full-mouth rehabilitation with implant-supported fixed dental prostheses for the edentulous maxilla and partially edentulous mandible: A case report (상악 완전 무치악 및 하악 부분 무치악 환자에서 임플란트 지지형 고정성 보철물을 이용한 전악 수복 증례 보고)

  • Kim, Tae-Hyung;Oh, Kyung-Chul;Moon, Hong-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.374-381
    • /
    • 2019
  • A conventional approach for the treatment of long-span edentulous areas is the use of removable dentures. However, placing implants in these areas results in superior functional outcomes by increasing the stability, support, and resistance of the prostheses and improving the masticatory efficiency. Treatment modalities utilizing implants can be further classified into either removable or fixed-type prostheses. Several factors such as the amount of alveolar bone resorption, inter-arch relationship, patient preferences, and socioeconomic status should be considered when determining the appropriate treatment approach. Monolithic zirconia has been considered a suitable material for implant-supported fixed dental prosthesis, because of the drastic improvement in its mechanical properties. It exhibits fewer incidences of fracture and chipping of the prostheses, and has greater bulk of material than metal-ceramic crowns and zirconia-veneered ceramics. Moreover, highly translucent monolithic zirconia is also available in the market, and its application is gradually increasing for anterior tooth rehabilitation. The present report describes a patient who underwent full-mouth rehabilitation with fixed dental prostheses (eight upper and three lower implant placements). All teeth, except bilateral mandibular canines and left mandibular first and second premolars, were extracted after the diagnosis of generalized chronic moderate-to-advanced periodontitis of the remaining teeth. The patient reported satisfactory esthetic and functional outcomes during the one-year follow-up visit.

Investigation on Ferroelectric and Magnetic Properties of Pb(Fe1/2Nb1/2)O3 Fe-Site Engineered with Antisymmetric Exchange Interaction (반대칭 교환 상호작용을 갖도록 Fe-Site가 제어된 PbFe1/2Nb1/2O3의 강유전/자기적 특성 연구)

  • Park, Ji-Hun;Lee, Ju-Hyeon;Cho, Jae-Hyeon;Jang, Jong Moon;Jo, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.297-302
    • /
    • 2022
  • We investigated the origin of magnetic behaviors induced by an asymmetric spin exchange interaction in Fe-site engineered lead iron niobate [Pb(Fe1/2Nb1/2)O3, PFN], which exhibits a room-temperature multiferroicity. The magnitude of spin exchange interaction was regulated by the introduced transition metals with a distinct Bohr magneton, i.e., Cr, Co, and Ni. All compositions were found to have a single-phase perovskite structure keeping their ferroelectric order except for Cr introduction. We discovered that the incorporation of each transition metal imposes a distinct magnetic behavior on the lead iron niobate system; antiferro-, hard ferro-, and soft ferromagnetism for Cr, Co, and Ni, respectively. This indicates that orbital occupancy and interatomic distance play key roles in the determination of magnetic behavior rather than the magnitude of the individual Bohr magneton. Further investigations are planned, such as X-ray absorption spectroscopy, to clarify the origin of magnetic properties in this system.

Low Temperature Sintering of Lead-Free Bi1/2Na1/2TiO3-SrTiO3 Piezoceramics by Li2CO3-B2O3 Addition (Li2CO3와 B2O3를 첨가한 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 저온 소성 연구)

  • Lee, Sang Sub;Park, Young-Seok;Duong, Trang An;Devita, Mukhlishah Aisyah;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated microstructures, crystal structures, polarization, dielectric and electromechanical properties of 0.76Bi1/2Na1/2TiO3-0.24SrTiO3 (BNT-24ST)-based piezoceramcs by adding Li2CO3 and B2O3 (LB) as sintering aids for low-temperature sintering. All samples were successfully synthesized using conventional solid-state reaction method and sintered at 950, 1,000, 1,050, 1,100 and 1,175℃ for 2 hours. Without LB, specimens required sintering temperatures over 1,175℃ for sufficient densification, while the addition of 0.10-mol LB decreased the sintering temperatures down to 950℃. The average grain size and dielectric properties of BNT-24ST-10LB ceramics were enhanced with increasing sintering temperature. We found that the low-temperature sintered BNT-24ST piezoceramics by adding LB showed the d33*value of 402 pm/V at 4 kV/mm after sintering at 1,050℃, which was better than that of high-temperature fired specimens sintered at 1,175℃ without LB (242 pm/V). We believe that the results of this study promise a candidate for low-cost multilayer ceramic actuator applications.

“Aluminium Nitride Technology-a review of problems and potential"

  • Dryburgh, Peter M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.75-87
    • /
    • 1996
  • This review is presented under the following headings: 1.Introduction 1.1 Brief review of the properties of AlN 1.2 Historical survey of work on ceramic and single crystal AlN 2.Thermochemical background 3.Crystal growth 4.Doping 5.Potential applications and future work The known properties of AlN which make it of interest for various are discussed briefly. The properties include chemical stability, crystal structure and lattice constants, refractive indices and other optical properties, dielectric constant, surface acoustic wave velocity and thermal conductivity. The history of work in single crystals, thin films and ceramics are outlined and the thermochemistry of AlN reviewed together with some of the relevant properties of aluminium and nitrogen; the problems encountered in growing crystals of AlN are shown to arise directly from these thermochemical relationships. Methods have been reported in the literature for growing AlN crystals from melts, solution and vapour and these methods are compared critically. It is proposed that the only practicable approach to the growth of AlN is by vapour phase methods. All vapour based procedures share the share the same problems: $.$the difficulty of preventing contamination by oxygen & carbon $.$the high bond energy of molecular nitrogen $.$the refractory nature of AlN (melting point~3073K at 100ats.) $.$the high reactivity of Al at high temperatures It is shown that the growth of epitactic layers and polycrystalline layers present additional problems: $.$chemical incompatibility of substrates $.$crystallographic mismatch of substrates $.$thermal mismatch of substrates The result of all these problems is that there is no good substrate material for the growth of AlN layers. Organometallic precursors which contain an Al-N bond have been used recently to deposit AlN layers but organometallic precursors gave the disadvantage of giving significant carbon contamination. Organometallic precursors which contain an Al-N bound have been used recently to deposit AlN layers but organometallic precursors have the disadvantage of giving significant carbon contamination. It is conclude that progress in the application of AlN to optical and electronic devices will be made only if considerable effort is devoted to the growth of larges, pure (and particularly, oxygen-free) crystals. Progress in applications of epi-layers and ceramic AlN would almost certainly be assisted also by the availability of more reliable data on the pure material. The essential features of any stategy for the growth of AlN from the vapour are outlined and discussed.

  • PDF

Structural and Electrical Properties of La0.7Sr0.3-xMgxMnO3 Ceramics with MgO Content (MgO 첨가에 따른 La0.7Sr0.3-xMgxMnO3 세라믹스의 구조적, 전기적 특성)

  • Hyun-Tae Kim;Jeong-Eun Lim;Byeong-Jun Park;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Young-Gon Kim;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.275-279
    • /
    • 2023
  • La0.7Sr0.3-xMgxMnO3 (LSMMO) (x=0.05~0.20) specimens are fabricated by a solid phase sintering method, and the sintering temperature and time are 1,300℃ and 2 hours, respectively. The dependence of the crystalline structure according to the amount of Mg2+ contents is not observed, and all specimens show a polycrystalline rhombohedral crystal structure, the X-ray diffraction (110) peaks move to the high angle side with increasing the amount of Mg2+ contents. LSMMO specimens exhibit a granule-shaped microstructure with an average grain size of 1 ㎛ or less. Resistivity gradually decrease as the amount of Mg2+ contents increased. And in the La0.7Sr0.1Mg0.2MnO3 specimen, resistivity and B25/65-value are 36.7 Ω-cm and 394 K at room temperature, respectively. LSMMO specimens show a variable-range hopping (VRH) electrical conduction mechanism, and the negative temperature of coefficient of resistance (NTCR) is approximately 0.37~0.38%/℃.