• Title/Summary/Keyword: Ceramic tiles

Search Result 41, Processing Time 0.029 seconds

Tile Size Dependency of Ballistic Performance in Alumina (알루미나의 시편크기가 방탄거동에 미치는 영향)

  • ;S.J. Bless
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.366-370
    • /
    • 1995
  • The ballistic efficiency of alumina tiles with various sizes, shapes, and target configurations was measured by the thick backing plate technique. The ballistic efficiency of square tiles roughly 8 mm thick struck by 12.7mm diameter bullets rapidly increased with tile size up to about 100mm, then tended to saturate. Circular shape tiles had lower ballistic efficiencies than those of square shape tiles for the same width and thickness. Small tiles (50mm) that were recessed in aluminum wells had a significantly higher ballistic efficiency than tiles placed on a flat surface. However, the difference in the ballistic efficiency between the two target configurtions became small at larger tile sizes. All the results could be explained by the effect of reflected waves at edges and the propagation of resulting cracks on the penetration process.

  • PDF

Influence of Fly Ash Addition on Properties of Ceramic Wall Tiles (플라이애시 첨가에 따른 세라믹 벽타일 소지의 물성변화)

  • Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2017
  • Recently, there have been many efforts to establish suitable processes for recycling fly ash, which is produced in thermal power plants and which poses serious environmental problems. Use of fly ash as a major ingredient of ceramic tiles can increase fly ash utilization, as well as reduce the cost of raw materials in ceramic tile production. In this study, the effects of fly ash addition on ceramic tile properties such as bending strength, water absorption and porosity were investigated. A manufacturing process of ceramic tile was developed for utilization of fly ash with high carbon content. In this approach, it is important to hold the ceramic tiles at a temperature that is sufficient for carbon oxidation, before the pores supplying oxygen to the inside of the ceramic tile are sealed. Ceramic wall tiles were manufactured with 0-40wt% of fly ash addition. The water absorption and porosity of the fired body were slightly changed with increasing fly ash content up to 30wt% and decreased with greater amounts of fly ash addition. The bending strength of ceramic tile including 10wt% fly ash increased, reaching a level comparable to that of ceramic tile without fly ash.

Study on the Growth of Monoclinic VO2 Phase Applicable for Thermochromic Ceramic Tile

  • Jung, DaeYong;Kim, Ungsoo;Cho, Wooseok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.361-365
    • /
    • 2015
  • Vanadium dioxide ($VO_2$) of monoclinic phase exhibits Metal Insulator Phase Transition (MIPT) phenomenon involving a sharp change in electrical and optical properties at $68^{\circ}C$. Solution-based process is applied to form uniform $VO_2$ coating layer on ceramic tiles. This can selectively block the near-infrared light to possibly reduce the energy loss and prevent dew condensation caused by the temperature difference. Heat treatment conditions including temperature and dwell time were examined to obtain a monoclinic $VO_2$ single phase. Both rutile and monoclinic $VO_2$ phases were observed from in the tiles post-annealed below $700^{\circ}C$. Desired monoclinic $VO_2$ single phase was grown in the tiles heat treated at $750^{\circ}C$. Nano facets of irregular size were observed in the monoclinic $VO_2$ phase involving the phase-transition. Grain growth of monoclinic $VO_2$ phase was observed as a function of dwell time at $750^{\circ}C$.

Recent Advances in the Ink-Jet Printing Ceramic Tile Using Colorant Ceramic-ink (고화도 발색세라믹잉크를 이용한 잉크젯프린팅 도자타일 연구동향)

  • Kim, Jin-Ho;Noh, Hyung-Goo;Kim, Ung-Soo;Cho, Woo-Suk;Choi, Jung-Hoon;Lee, Yong-Ouk
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2013
  • Over the past decade, the feasibility of using ink-jet printing for the decoration of porcelain tiles has been explored, and significant advances have been made regarding the technologies underlying printing system and materials. An ink-jet printing system for porcelain tiles has many advantages compared with a conventional printing system, including the following: (1) it is a digital process; (2) it uses non-contact printing; (3) it allows random image generation; (4) it is a highly efficient process (reduced production cost); (5) it offers massive and continuous production; and (6) it uses inorganic pigment colorants. For these reasons, ink-jet printing systems for porcelain tiles have been commercialized and are at present rapidly spreading toceramics-leading countries such as Spain, Italy, China and Japan. We also developed a proprietary system involving a piezo-electric drop-on-demand method and an ink-circulation step. The resolution of this system is greater than 360 dpi after a heat treatment and the maximum printable width is 600 mm, even when setting the printing head unit with four digital colors (cyan, magenta, yellow, and black). In addition, we systematically developed ceramic colorant-containing inks and tile-printing technology applicable to our ink-jet printing system.

Hydrophobic property of surface glaze of ceramic tiles by copper powder addition (구리 분말 첨가를 통한 도자타일 표면유약의 소수화 특성)

  • Choi, Cheong-Soo;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.215-221
    • /
    • 2019
  • Ceramic tiles, which are widely used as interior and exterior materials for construction, have recently been required to have pollution prevention function. In order to remove contaminants, many researches of ceramic tiles with hydrophilic surface property through $TiO_2$ coating and hydrophobic surface property by improving the flow of water droplets have been proceeded. Expecially, it is very important to develop a surface glaze having hydrophobicity through a sintering process above $1000^{\circ}C$ without an additional coating process and the degradation of mechanical properties. In this study, surface glaze with copper powder was applied to manufacture of ceramic tile. Contact angle of ceramic tile according to thickness of surface glaze layer was investigated after the conventional sintering process. The contact angle of the ceramic tile surface without the copper powder was shown to be $25.3^{\circ}$, which is close to hydrophilic surface. However, the contact angle was increased up to $109.8^{\circ}$ when the thickness of surface glaze with the copper powder was $150{\mu}m$. The excellent hydrophobic property of the surface glaze with copper powder was resulted from the cellular structure of copper particles on the glaze surface. In addition, the mechanical properties of the developed hydrophobic ceramic tiles such as bending strength, chemical resistance, abrasion resistance, and frost resistance were well maintained and meet the criteria of 'KS L 1001 Ceramic tile'.

Effect of Hydrophobic Surface Coating on Flowability of Ceramic Tile Granule Powders (표면 소수화 처리를 통한 도자타일 과립 분말의 유동 특성)

  • Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung;Hwang, Kwang-Take
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.425-431
    • /
    • 2019
  • Generally, ceramic tiles for building construction are manufactured by dry forming process using granular powders prepared by spray drying process after mixing and grinding of mineral raw materials. In recent years, as the demand for large ceramic tiles with natural texture has increased, the development of granule powders with high packing ratio and excellent flowability has become more important. In this study, ceramic tile granule powders are coated with hydrophobically treated silica nanoparticles. The effects of hydrophobic silica coating on the flowability of granule powders and the strength of the green body are investigated in detail. Silica nanoparticles are hydrophobically treated with GPTMS(3-glycidoxypropyl trimethoxy silane), which is an epoxy-based silane coupling agent. As the coating concentration increases, the angle of repose and the compressibility decrease. The tap density and flowability index increase after silica coating treatment. These results indicate that hydrophobic treatment can improve the flowability of the granular powder, and prevent cracking of green body at high pressure molding.

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Ecological Studies on Togyo Reservoir in Chulwon, Korea. 7. The Colonization of Epilithic Algae on Artificial Substrata (Tiles) at Mesocosm

  • Lee, Kyung;Yoon, Sook-Kyung;Ki, Jang-Seu;Han, Myung-Soo
    • ALGAE
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • Patterns of epilithic algal colonization on artificial substrata (unglazed ceramic tiles) were investigated from 23rd April to 3rd July 1999 at weekly intervals over a 10 weeks period outside and inside the mesocosm in Togyo reservoir within the Civilian Passage Restriction Line near Demilitarized Zone (DMZ) in Korea. The highest standing crops of epilithic algae was 1,798$\cdot$10³ cells$\cdot$$cm^{-2}$ outside the mesocosm on 26th June and also inside the mesocosm those was 2,391$\cdot$10³ cells$\cdot$$cm^{-2}$ on 26th June, 9 weeks after the experiment began. The dominants outside the mesocosm were Achnanthes minutissima, Navicula bicephala, Oscillatoria angusta, Synedra delicastissima, S. tenuissima, S. ulna v. danica and Tabellaria flocculosa, and those inside the mesocosm were Achnanthes minitissima, Coenochloris polycocca, Fragilaria crotonenesis, Peridinium cinctum, Synedra delicatissima, Tabellaria flocculosa and Ulothrix subtilissima. Diatoms were most abundant and Achnanthes minutissima was the most important species colonizing on the tiles. Chlorophyll-a content was highest value of 5.4 mg$\cdot$$m^{-2}$ on 19th June after 8 weeks growth outside the mesocosm and was 24.4 mg$\cdot$$m^{-2}$ on 26th June, 9 weeks after the experiment began on tiles inside the mesocosm. It was also shown that unglazed ceramic tiles were a more suitable substratum for colonization than the glass slides. Consequently the substratum selection plays an important role in the colonization by the epilithic algal community.

Fabrication and Physical Properties of Tiles Recycled Waste Glass (폐유리를 재활용한 타일 제조 및 물리적 특성)

  • Kim, Young-Kil;Jung, Yeon-Gil;Song, Jun-Baek;Shin, Min-Chul;Lee, Hee-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.193-197
    • /
    • 2005
  • Wall and floor tiles were fabricated by a dry pressing method using waste glass and clay. The physical properties of the tiles such as absorption, bulk density, porosity, compressive strength, and abrasion loss are investigated with the firing temperature and glass contents. The physical properties are improved with increasing the firing temperature and glass contents. The composition containing the glass of $70 wt%$ and fired at $1050^{\circ}C$ for 2 h has the good properties. The optimal properties obtained in the tiles are the water absorprion of about $0.9\%$, the bulk density of about $2.3\;g/cm^3$, the apparent porosity of about $2.1 \%$, the compressive strength of about 210 MPa, and the abrasion loss of about 0.022 g, when the composition containing the glass of $70\;wt\%$ is fired at $1050^{\circ}C$. The physical proper1ies of tiles fabricated were enhanced compared to the commercial clay tiles, due to easy melting and densification of glassy phase during the firing process.

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.