• Title/Summary/Keyword: Ceramic recycling

Search Result 156, Processing Time 0.07 seconds

Physical Properties of Cement Using Slag as Raw Mix of Clinker (슬래그를 클링커 혼합원료로 사용한 시멘트의 물리적 특성)

  • Young-Jun Lee;Do-young Kwon;Bilguun Mend;Yong-Sik Chu
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.12-20
    • /
    • 2024
  • The global cement industry emits approximately 2.9 billion tons of greenhouse gases, of which 1.74-1.89 billion tons are emitted from limestone, which is the main raw material for clinkers. Therefore, the feasibility of using slag, a non-carbonated CaO-based raw material, must be investigated, and the physical properties of cement must be considered. In this study, the mixing ratios of the raw mix and properties of cement were analyzed. The CaCO3 replacement ratio was limited when one type of slag was used; however, when the mixed slag was utilized, the CaCO3 replacement ratio increased by more than 12 %. The compressive strength of the slag-incorporated cement was lower than that of Ordinary Portland Cement (OPC). Therefore, the lime saturation factor (LSF) of the raw mix and fineness of the cement were increased to improve the compressive strength. The compressive strength of cement with improved fineness was similar to that of OPC for a CaCO3 replacement ratio of up to 6 %, and it decreased as the CaCO3 replacement ratio was increased to 9 %. When both fineness and LSF were increased, the compressive strength and flow value of the cement with a CaCO3 replacement ratio of 12 % were similar to that of OPC.

High Temperature Properties in Finishing Mortars of Exterior Insulation Finishing System Using Fly Ash and Waste Glass Powder (플라이애시와 폐유리분말을 사용한 외단열용 마감모르타르의 고온 특성)

  • Song, Hun;Shin, Hyeon Uk
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.64-72
    • /
    • 2019
  • Fly ash has different chemical composition depending on the type and quality of flaming coal. Fly ash is classified according to carbon content and particle size. Waste glass powder is manufactured by crushing glass. Exterior Insulation Finish System (EIFS) is generally applied by using poly-styrene foam which is economical and has excellent thermal insulation performance. However, poly-styrene foam has excellent insulation performance, but it is vulnerable to fire, which is becoming a serious problem. In this study, using a fly ash and waste glass powder to produce a finishing mortar at high temperatures. Also, High temperature strength and flame retardant properties were tested according to the cover thickness. From the test result, finishing mortar prepared using fly ash and waste glass powder is due to the improved heat resistance by alkali-activated bonding. However, since the strength decreases at high temperatures, it is necessary to select an appropriate mixing proportion.

Utilization of Mine failings from the Jeonju-Il Mine (전주일(全州一) 금속광산(金屬鑛山) 폐광미(廢鑛尾)의 활용(活用) 방안(方案) 연구(硏究))

  • Jeong, Soo-Bok;Chae, Yeung-Bae;Hyun, Jong-Yeong;Kim, Hyung-Seok;Yoon, Sung-Moon
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.44-53
    • /
    • 2007
  • The Jeonju-Il mine tailings contain large quantities of $SiO_2\;and\;Al_2O_3$ and lesser quantities of metallic components. In this study, we studied about the possibility of using mine tailings as a raw material in various industries. it was found that the sintered mine tailings had a good quality in every respect such as chromaticity, firing shrinkage and water absorption etc. Therefore if can substitute clay mineral in the ceramic industry. Also it can substitute about 2.94% of the raw materials of ordinary portland cement. We can use the coarse tailing as the fine aggregate for the ready-mixed mortar; and the fine tailing, as the filler for the bituminous paving mixture; because both products were not only suitable for Korea industrial standard in quality, but also environmentally harmless.

The treatment of coal fly ash for the recycling as ceramic raw materials : I. The effect of calcination and elutriation (요업원료로 재활용하기 위한 석탄회의 처리 : I. 하소 및 수비의 영향)

  • 김유택;이준호;정철원;허화범;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.414-422
    • /
    • 1995
  • Coal fly ash was calcined and elutriated for recycling as ceramic raw materials. C Crystal phases, morphologies, chemical components, particle size distributions and Ig. loss of as-received, calcined and elutriated coal fly ash were investigated to study the effects of the calci nation and elutriation on the coal fly ash classification. The experimental equations, which were used in elutriation of clay, were examined in order to find out which equation is appropriated for coal fly ash classification. It turned out that Rittinger's equation is relatively well matched for the fly ash. Having nothing to do with the treatment conditions, the crystal phases of coal f fly ash were mullite, quartz. Calcite peak was detected in as - received and elutriated coal fly a ash; however, it disappeared in calcined coal fly ash. As - received coal fly ash consists of various type of particles such as a cenosphere, coke type, silicate type, whisker type and aggregat e ed type. In case of calcined coal fly ash, coke type particles were eliminated and agglomerated type particles were relatively increased. Most of the particles that were relatively spherical cenosphere in the 4th step of elutriator. Particle size distribution was narrowed by calcination a and elutriation. Especially, in elutriation, particle size distribution was very narrow.

  • PDF

Characteristics of Basalt Materials Derived from Recycling Steel Industry Slags (철강산업 슬래그를 이용하여 제조한 바잘트 소재의 특성)

  • Jung, Woo-Gwang;Back, Gu-Seul;Yoon, Mi-Jung;Lee, Jee-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.281-288
    • /
    • 2017
  • In this study, Fe-Ni slag, converter slag and dephosphorization slag generated from the steel industry, and fly ash or bottom ash from a power plant, were mixed at an appropriate mixing ratio and melted in a melting furnace in a mass-production process for glass ceramics. Then, glass-ceramic products, having a basalt composition with $SiO_2$, $Al_2O_3$, CaO, MgO, and $Fe_2O_3$ components, were fabricated through casting and heat treatment process. Comparison was made of the samples before and after the modification of the process conditions. Glass-ceramic samples before and after the process modification were similar in chemical composition, but $Al_2O_3$ and $Na_2O$ contents were slightly higher in the samples before the modification. Before and after the process modification, it was confirmed that the sample had a melting temperature below $1250^{\circ}C$, and that pyroxene and diopside are the primary phases of the product. The crystallization temperature in the sample after modification was found to be higher than that in the sample before modification. The activation energy for crystallization was evaluated and found to be 467 kJ/mol for the sample before the process modification, and 337 kJ/mol for the sample after the process modification. The degree of crystallinity was evaluated and found to be 82 % before the process change and 87 % after the process change. Mechanical properties such as compressive strength and bending strength were evaluated and found to be excellent for the sample after process modification. In conclusion, the samples after the process modification were evaluated and found to have superior characteristics compared to those before the modification.

The treatment of coal fly ash for recycling as ceramic raw materials : II. The effects of sampling condition and pH treatment in elutriation (요업 원료로 재활용하기 위한 석탄회의 처리 : II. 채취조건 및 수비선별시 pH의 영향)

  • 허화범;정철원;박종현;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.627-639
    • /
    • 1996
  • Charateristics of Ansan and Boryong coal fly ashes collected at different seasons were investigated for the recycling them as ceramic raw materials. The effect of pH treatment on the classification of Ansan coal fly ashes by elutriation was discussed. Charateristics of ansan and boryong coal fly ashes were not significantly changed with power plants and seasons. major crystalline phases were mullite and quartz. These results suggested that coal fly ashes cab be used as raw materials instead of clay minerals. However, particle size distribution was very broad from a few $\mu\textrm{m}$ to over $100\;\mu\textrm{m}$. Especially, ansan coal fly ashes have various morphologies. Therefore, coal fly ashes should be classified before using as raw materials. Because of higher dispersion by pH treatment, spherical cenospheres were mainly collected in the 4th step and particle size distribusion was also decreased by elutriation for the ansan coal fly ashes. The specific surface area of the sample collected in the 4th step was $1.24\;m^{2}/g$ which was smaller than that of not treated Ansan coal fly ashes.

  • PDF

A Study on Mineral Carbonation of Chlorine Bypass Dust with and without Water Washing (수세 유무에 따른 염소 바이패스 분진의 광물 탄산화 연구)

  • Hye-Jin Yu;Woo Sung Yum
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.18-24
    • /
    • 2023
  • This study undertook initial investigations into the carbonation of chlorine bypass dust, aiming to apply it as a raw material for cement and as an admixture for concrete. Various experimental methods, including XRD(X-ray diffraction), XRF(X-ray fluorescence), and particle size distribution analyses, were employed to verify the physical and chemical properties of chlorine bypass dust, with and without water washing. The mineral carbonation extent of chlorine bypass dust was examined by considering the dust type, stirring temperature, and experiment duration. Notably, a higher degree of mineral carbonation was observed in water-washed bypass dust than its non-water-washed counterpart, indicating an elevated calcium content in the former. Furthermore, an augmented stirring temperature positively impacted the initial stages of mineral carbonation. However, divergent outcomes were observed over time, contingent upon the specific characteristics of dust types under consideration.

Performance of Magnesia Cement Using MgCO3 and Serpentine

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.116-121
    • /
    • 2016
  • The amount of carbon dioxide ($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical methods of reducing $CO_2$ in building materials is the addition of slag and fly ash, like pozzolan material another method is to reduce $CO_2$ production by developing carbon negative cement. MgO-based cement from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, basic research on magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as the main starting materials, as well as blast furnace slag for the mineral admixture, was carried out for industrial waste material recycling. In order to increase the overall hydration activity, $MgCl_2$ was also added. In the case of the addition of $MgCl_2$as accelerating admixture, there was a promoting effect on the compressive strength. This was found to be due to the production of needle-like dense Mg-Cl hydrates. Mgnesia cement has a high viscosity due to its high specific surface area therefore, when the PC-based dispersing agent was added at a level of more than 1.0%, it had the effect of improving fluidity. In particular, the addition of $MgCl_2$ in magnesia cement using $MgCO_3$and magnesium silicate ore (serpentine) as main starting materials led to a lower expansion ratio and an increase in the freeze-thaw resistance finally, the addition of $MgCl_2$ as accelerating admixture led to good overall durability.

Development of Grogged Clay Used Water-purified-sludge (정수슬러지를 사용한 조합토의 개발)

  • Jeong, Jae-Jin;Lee, Yong-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • People could not imagine living without tab water. However, the water filtering process at a purification plant used to produce tab water creates tons of sludge, which is generally wasted. This sludge waste consists of (1) mineral elements, such as sand, (2) organic materials, and (3) a coagulant, which agglomerates the two. As an enormous amount of sludge waste is generated every year, numerous studies have been carried out to identify how to deal with this problem. Currently, however, most of the sludge waste is directly discarded in landfills. In the present study, water-purified sludge waste received a heat treatment at $1300^{\circ}C$ and was then ground into particles to be used as a ceramic material. Next, the resultant particles were compounded with chamotte substitutes to produce grogged clay that is suitable for wheel-throwing ceramics. Consequently, the plasticity of the sludge waste decreased as the content of calcination increased. Thus, it is considered that wheel throwing is available only up to PBF-3. Thus, it is available for wheel throwing and has a high strength of 864 $kgf/cm^2$ with less than 0.2 percent of porosity and absorption ratio were displayed in PBF-2 at $1280^{\circ}C$ with 20 percent of calcination from the purified sludge. Therefore, the PBF-2 body produced in this study was considered to be capable of replacing grogged clay in the market.

TREATMENT OF FOODWASTE AND POSPHORUS REMOVAL USING STRUVITE CRYSTALLIZATION IN HYBRID ANAEROBIC REACTOR WITH SAC MEDIA

  • Park, In-Chul;Kim, Dong-Su;Kim, Sung-Man;Lee, Jung-Jun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.129-132
    • /
    • 2001
  • The purpose of this research was to understand possibility of foodwaste treatment by hybrid anaerobic reactor(HAR). The Possibility of methane utility and applicability of hybrid reactor system using foodwaste as substrate was investigated. The maximum loading rate and optimized operational conditions were determined. Hybrid anaerobic reactor was filled with packing material 50% of its total volume between the tube and the outer surface. The packing material used was randomly packed open-pore synthesis activated ceramic(SAC) media as support media for microbial attachment, growth, and chemical stability protected bacteria from effect of organic acid accumulation. In this research, although foodwaste has high concentrations C $l^{[-10]}$ and S $O_{4}$$^{2-}$ concentration the possibility of foodwaste anaerobic treatment was when foodwaste is treated by anaerobic digestion, this study focused on the possibility using C $H_4$ gas made under the anaerobic treatment as an alternative energy source. Other objective of this research is to study struvite formation and crystal forms in anaerobic digester. HAR is used to investigate phosphate crystallization without the addition of chemicals.

  • PDF