• Title/Summary/Keyword: Ceramic recycling

Search Result 156, Processing Time 0.02 seconds

Synthesis of Silicon Carbide Powder Using Recovered Silicon from Solar Waste Silicon Wafer (태양광 폐실리콘 웨이퍼 회수 실리콘을 활용한 탄화규소 분말 합성)

  • Lee, Yoonjoo;Kwon, Oh-Kyu;Sun, Ju-Hyeong;Jang, Geun-Yong;Choi, Joon-Chul;Kwon, Wooteck
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.52-58
    • /
    • 2022
  • Silicon carbide powder was prepared from carbon black and silicon recovered from waste solar panels. In the solar power generation market, the number of crystalline silicon modules exceeds 90%. As the expiration date of a photovoltaic module arrives, the development of technology for recovering and utilizing silicon is very important from an environmental and economic point of view. In this study, silicon was recovered as silicon carbide from waste solar panels: 99.99% silicon powder was recovered through purification from a 95.74% purity waste silicon wafer. To examine the synthesis characteristics of SiC powder, purified 99.99% silicon powder and carbon powder were mixed and heat-treated (1,300, 1,400 and 1,500 ℃) in an Ar atmosphere. The characteristics of silicon and silicon carbide powders were analyzed using particle size distribution analyzer, XRD, SEM, ICP, FT-IR, and Raman analysis.

Survey on the Recycling of Waste Slag Generated by Smelting Reduction of Deep-Sea Manganese Nodules (망간단괴 용융환원 폐슬래그의 재활용 방안)

  • Park, Hyungkyu;Nam, Chulwoo;Kim, Sungdon
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Slags generated in the smelting reduction of deep sea manganese nodule could be utilized as an additional materials for making Fe-Si-Mn alloys by mixing with cokes and re-smelting at an arc furnace. In this re-melting process slag is also generated, and the secondary slag is treated as waste. In this survey, recycling of the waste slag of Mn nodule was studied. It is tried to utilize the waste slag as ceramic materials or construction materials. However, it is difficult to use the waste slag directly as an additional material to ceramics such as portland cement or castable refractory material due to the much difference of chemical compositions. As an altercation road constructing material is considered, and toxicity on the soil of the waste slag was tested according to Korean Standard for testing permissible amount of toxic substances. The test result was satisfied with the requirements on the standard. So, it should be suggested that the waste slag of the Mn nodule could be utilized as constructing materials such as road filler or base materials.

Characterization of household solid waste and current status of municipal waste management in Rishikesh, Uttarakhand

  • Rawat, Suman;Daverey, Achlesh
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.323-329
    • /
    • 2018
  • The municipal solid waste (MSW) management system in one of the Class II Indian cities i.e. Rishikesh was studied and analysed to identify the key issues in solid waste management in the city. A total of 329 solid waste samples from 47 households were collected to characterize the household solid waste (HSW). The average (HSW) generation rate was 0.26 kg/c/d and it was composed of organic waste (57.3%), plastics (14%), paper (10.9%), and glass and ceramic (1.3%) and other materials (16.5%). There was an inverse relationship between household waste generation rate and family size (p < 0.05). The MSW management system practiced in Rishikesh is unsound. There is no waste segregation at source, no provisions of composting and no recycling by formal sector. The collection and transportation of waste is inadequate and inappropriate. Collected waste is dumped in open dumping site without scientific management. Following are some recommendations for developing a sustainable solid waste management system in Rishikesh city: (1) sensitize people for segregation at source; (2) promote reduction, reuse and recycling of wastes; (3) promote community based composting; (4) provision for 100% door to door collection and; (5) formalize the informal sectors such as rag pickers and recycling industries.

Leaching mechanism of nickel from the obsolete Ni-MLCC (Multi-Layer Ceramic Capacitor) (폐 적층형세라믹콘덴서로부터 니켈의 침출거동에 관한 연구)

  • Kwon, Keun-Hee;Lee, Jae-Chun;Ahn, Jong-Gwan;Kim, Nam-Chul
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.56-60
    • /
    • 2003
  • 폐 적층세라믹콘덴서(MLCC)로부터 Ni을 회수하기 위하여 침출실험을 수행하였다. 침출용매로 $HNO_3,\;HCl\;H_2SO_4$을 사용하여 시간의 변화, 반응온도의 변화, 시료 입도와 광액농도의 변화가 Ni의 침출율에 미치는 영향과 최적 침출 조건을 조사하였다. 그 결과 HCl, $H_2SO_4$을 침출용매로 사용했을 때 Ni 침출의 최적 조건은 산농도 5M, 반응온도 $90^{\circ}C$나타났으며, $HNO_3$을 침출용매로 사용했을 때 최적 침출 조건 산농도 1M, 반응온도 $70^{\circ}C$에서 광액농도 500ml당 20g일때 Ni 침출율이 98%로 최대였다.

  • PDF

A Study on the Electrical and Physical Properties of Cement Mortar used Carbon Material Industrial by-product (탄소소재 산업부산물을 사용한 시멘트 모르타르의 전기·물리적 특성 연구)

  • Jo, Jeong-Hoon;Kim, Nam-Il;Lee, Young-Jun;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.19-27
    • /
    • 2021
  • Electrically conductive mortar used in industrial carbon material byproducts was manufactured and analyzed in this study. The contents of the carbon material and mixed water were controlled, and the distance between electrodes was set to 0.42 m and 0.88 m. The carbon material was graphite with a layered structure. The carbon material was used as fine powder and aggregate substitutes according to particle size. The average particle sizes of each materials were 18.4㎛ and 546.1 ㎛ and the electrical conductivities were 62.3 S/m and 32.5 S/m, respectively. To maintain similar mortar flow in each sample, the water content was increased with increasing carbon material, and accordingly, the porosity showed an increasing trend. When electrode distance of the mortar (week 6) was 0.42 m, the voltage-current values were 342 V-1.48 A (S20) and 349 V-1.44 A (S30). For electrode distance of 0.88 m, these values were 513 V-0.98 A (S20) and 500 V-1.01 A (S30). The exothermic properties improved with increasing carbon material content and decreasing electrode distance.

A Study on the Characteristics of Clinker and Cement as Chlorine Content (염소 함량에 따른 클링커 및 시멘트의 물성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.10-16
    • /
    • 2021
  • In this study, a clinker was prepared using raw materials with CaCl2. The characteristics of the chlorine-added clinker and cement were analyzed. The clinker modulus were set to Lime Saturation Factor (LSF) 92, Silica modulus (SM) 2.5, and Iron Modulus (IM) 1.5. The physical properties of cement using the chlorine-containing clinker were characterized. As the chlorine content increased, the free-CaO content in the clinker decreased, and that in the 2000 ppm clinker was reduced by approximately 40% compared to that in the 0 ppm clinker. There was an increase in the amount of chlormayenite, with a content of up to 3.4% present in the 2000 ppm clinker. The amounts of alite and belite also slightly increased. The compressive strength of mortar at 3 days and 7 days increased as the chlorine content increased. This trend was presumed to arise from the effect of hydration, which was promoted by the presence of chlorine. The compressive strength of 1000 ppm mortar increased by approximately 20% compared to that of 0 ppm mortar.

A Study on the Characteristics of Chlorine-Containg Cement Depending on Changes in Gypsum and Iron Modulus (이수석고 함량과 Iron Modulus 변화에 따른 염소 함유 시멘트의 특성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • The physical properties of chlorine-containing cement were analyzed to optimize the operational conditions when waste resources containing chlorine were used in the cement manufacturing process. Cement with clinker to gypsum weight ratios of 95:5 and 93:7 were manufactured. In addition, the iron modulus (IM) of clinker was set to 1.3, 1.5, and 1.7 to evaluate the burnability and physical properties of clinker. With constant chlorine content, increasing gypsum content resulted in a decrease in the 3 day-compressive strength, whereas the 28 day-compressive strength increased. In addition, flow and setting time also increased with increasing gypsum content. As the IM decreased, burnability was improved, free-CaO content decreased, alite and ferrite content increased, and compressive strength increased In particular, the compressive strength of IM 1.3 was approximately 14% greater than that of IM 1.7.

The Preparation of porous ceramic material from aluminum waste dross (알루미늄 廢드로스를 活用한 세라믹 多孔體의 製造)

  • Kim, Ki-Seok;Park, Jay-Hyun;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.19-27
    • /
    • 2005
  • The recycling possibility of aluminum waste dross(AWD) as a ceramic raw material of porous light-weight material was examined. A aluminum waste dross was washed 4-7 consecutive times and roasted at 900$^{\circ}% for 1hour as pre-treatments. The properties of the pre-treatment of aluminum waste dross was investigated. It was conformed by XRD result that the spinel crystalline was grown in AWD, after roasting. After the roasted AWD was ground in aqueous state, the sodium hexaphosphate(SHP) as a dispersant which is used for stabilizing the concentrated slurry was added to the AWD slurry. The porous material was prepared by slurry foaming method with surfactant at room temperature. The foamed slurry volumes were 2 and 3 times of the original slurry volume. The properties of porous material with extended volume of 3 times was following: the porosity was about 84%, bulk density was 0.59 g/cm$^3$, the range of pore was from 50 ${\mu}m$ to 500 ${\mu}m$ and mean pore size was about 200 ${\mu}m$. AWD porous material was sintered at 1150$^{\circ}C-1250$^{\circ}C. It was colcluded that AWD was sintered well at 1200$^{\circ}C from material surface observation by SEM.

Development and Physical Properties of a Glass-ceramic from Fly Ash of Power Station (발전소의 석탄재로부터 결정화유리의 제초 및 물리적 특성)

  • 김형순;김재명;김석원;허증수
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.558-565
    • /
    • 2002
  • Coal fly ash, produced from a power plant in Korea was used for the production of glass-ceramics and the physical properties of glass-ceramics were evaluated. CaO and TiO$_2$ were added into the fly ash during the melting process to reduce the viscosity of molten glass and to induce internal crystallization of glass, respectively. Glass-ceramic was produced through a single stage heat treatment (at 950∼1050$\^{C}$ for 37∼240 min) after preparing glass (iota fly ash powder. As a result, a new tiny rod type crystals (a=7.4480, b=10.7381, c=4.3940 A, $\alpha$=94.9, $\beta$=98.6, γ=108.5°) was found in the glass-ceramics, which showed attractive mechanical properties, high hardness (7.1∼7.6 GPa) and wear resistance (by erosion test). Thus a glass-ceramic produced from thermal power plant fly ash and cell as a source for CaO exhibits a suitable treatment for the recycling and exploitation of waste materials and would be acceptable for a new application far building materials.

Use of Calcined Oyster Shell Powders as CO2 Adsorbents in Algae-Containing Water

  • Huh, Jae-Hoon;Choi, Young-Hoon;Ramakrishna, Chilakala;Cheong, Sun Hee;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.429-434
    • /
    • 2016
  • Here, we introduce a means of utilizing waste oyster shells which were obtained from temporary storage near coastal workplaces as $CO_2$ adsorbents. The calcined CaO can be easily dissociated to $Ca^{2+}$ cation and $CO_3{^{2-}}$ anion by hydrolysis and gas-liquid carbonation reaction and converted to precipitated calcium carbonate (PCC) in algae-containing water. The calcium hydroxide and carbonation combination in algae-containing water significantly contributed to improving water quality which is very dependent on the addition amount of calcined powders.