• Title/Summary/Keyword: Ceramic recycling

Search Result 156, Processing Time 0.046 seconds

Spherodization of Granuled Cr2O3 Fine Ceramic Powder by Plasma Spray (플라즈마 분사 처리에 의한 Cr2O3 조립분말의 구상화에 대한 연구)

  • Lee, Dong Won;Lee, Hak Sung;Yu, Ji-Hun;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.92-97
    • /
    • 2016
  • Spray dried $Cr_2O_3$ powder having an agglomerated structure of particles was twice treated into a plasma flame to increase its apparent density. The powder subjected to the first densification treatment did not show the entirely melted state keeping inner particle hollows, and it was fully melted after the second processing only. The powder size as a result of the second treatment decreased, and the apparent density as well as flowability were increased due to melting and surface smoothing effects. But a part of particles after the second densified treatment showed the hollow structure, especially those which were above $30{\mu}m$ in size. This densification behavior of the powder has been qualitatively discussed in terms of the thermal conductivity and inner gas pressure within aggregates exposed to the plasma flame.

Recovery of Tin with High Purity for Dental Materials from Waste Tin oxide by Reduction and Electro Refining (폐주석산화물로부터 환원공정 및 전해정련을 통한 치과용 고순도 주석 회수)

  • Jung, Hyun-Chol;Kim, Sang-Yeol;Lee, Min-Ho
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.38-43
    • /
    • 2018
  • In this study, using electro-refining process and methane gas reduction, we performed studying the recovery of tin with high purity from waste tin oxide had used as a electrode rod of ceramic furnace which occurred during glass production process. We recovered the crude tin of 99% purity from a methane gas reduction process and controlled a little amount of impurities. When the electrolytic refining condition was a current density of $60A/dm^2$ and the sulfuric acid concentration of 0.75 mol, 96.8% of recovered tin (99.979% of purity) were recovered during the electrolytic refining. We confirmed that toxic impurities such as Pb, Sb included in electrode rod. could be controlled.

Membrane Fouling Control Effect of Periodic Water-back-flushing in the Tubular Carbon Ceramic Ultrafiltration System for Recycling Paper Wastewater (제지폐수 재활용을 위한 관형 탄소계 세라믹 한외여과장치에서 물 역세척의 막오염 제어 효과)

  • 김미희;박진용
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.190-203
    • /
    • 2001
  • In this study the discharged wastewater from a paper plant was filtrated by 4 kinds of tubular carbon ceramic ultrafiltration membranes with periodic water-back-flushing. We could investigate effects of watch-back-flushing period, transmembrane pressure (TMP) and flow rate, and find optimal operating conditions. The back-f1ushing time (BT) was fixed at 3 sec, and fi1tration times (FT) werc changed in 15~60 scc, TMP in 1.00~2.50$kg_{f}$/$cm^2$, and the flow rates in 0.27~1.75 L/min. The optimal conditions were discussed in 7he viewpoints of dimensionless permeate flux (J/J$_{0}$), total permeate volume ($V^T$) and resistance of membrane fouling ($R^f$). Optima1 back-flushing period was BT/FT=0.20, suggesting that the frequent back-flushing should decrease membrane fouling. Optimal TMP in the viewpoint of $V^T$ was 1.00~1.55$kg_{f}$/$cm^2$, suggesting that rising TMP should increase membrane fouling and decrease permeate flux. But, rising f1ow rate should decrease membrane fouling and increase permeate flux. Then, average rejection rates of pollutants filtratedby carbon ceramic membranes were 88~98 % for turbidity, 48~72% fort $COD_{cr}$ and 37~76% for TDS.

  • PDF

FLEXURE STRENGTH AND COLOR CHANGE OF REUSED IPS EMPRESS 2 (반복 사용된 IPS Empress 2의 굽힘강도와 색변화에 관한 연구)

  • Song Young-Kuk;Kim Yu-Lee;Kim Sung-Hoon;Ahn Hee-Young;Jin Tai-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.71-80
    • /
    • 2003
  • Development of new ceramic and esthetic need of patient increased the use of ceramic restorations. The purpose of this study was to confirm the possibility of recycling for IPS Empress2 which has a lot of advantages in esthetics. 1st, 2nd and 3rd pressed disc-shaped($10{\times}1.5mm$) IPS Empress 2 specimens were made with IPS Empress ingot(shade 200, Ivoclar, Liechtenstein) and pressing furnace(IPS Empress EP 500, Ivoclar, Liechtenstein). Flexure strength was measured with universal testing machine(Zwick 145641, Zwick, Germany), and color change and staining resistance of specimens were evaluated with colorimeter (Model TC-6FX, Tokyo Denshoku Co., Japan). The followings were drawn from this study : 1. Flexure strength of the 1st, the 2nd, and the 3rd pressed specimens showed 236.78 MPa. 247.16MPa, and 220.72MPa, respectively. Flexure strength of the 2nd pressed specimens was higher than others, but there's no statistical difference between them. 2. The color difference between the 1st and the 2nd pressed specimens was 3.25, and that between the 1st and the 3rd pressed specimens was 3.63(P<0.05). 3. The color change after staining of the 1st, the 2nd. and the 3rd pressed specimens were 1.43, 2.64, and 1.45, respectively. In this study, reused IPS Empress 2 specimens showed insignificant change of flexure strength and stain resistance, but they showed some color change according to reuse. From this results, the limited possibility of reuse for IPS Empress 2 could be considered.

The Properties of Sintered Body by Using the Slip Casting Process with Remained Dental Zirconia Block after Machining (치과용 지르코니아 코어 가공후의 잔여물을 활용하여 주입성형법으로 제조한 소결체의 특성)

  • Kim, Sang-Su;Lee, Dong-Yoon;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Purpose: All ceramic crown, made from zirconia instead of metal for core material, is recognized the best esthetical prosthesis. Recently, high-priced zirconia blocks and expensive CAD/CAM machines come into use for making zirconia core. In this study, slip casting process is adapted to evaluate the possibility of the recycling the remained parts of zirconia block after machining. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Passed powders were ball milled under various conditions to obtain the optimum zirconia slip for casting. Solid casting method was used for casting the specimens with plaster mold. Formed specimens were dried and biscuit fired at $1,000^{\circ}C$ for 1 hour. Biscuit fired specimens were finished with exact shape of square pillar. Finished specimens were fired from $1,200^{\circ}C$ to $1,550^{\circ}C$ at $50^{\circ}C$ intervals for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM. Results: Above examinations indicated that the optimum firing temperture was $1,500^{\circ}C$, and when fired at this temperature for 1 hour, apparent porosity was 0% and flexural strength was 680MPa. SEM photomicrographs showed uniform 200~300nm grain size, which is equal with microcture of sintered commercial zirconia block. when compare 24% linear shrinkage of cast specimen with 20% linear shrinkage of CAD/CAM machined block, it was estimated that the size controlling of cast core was not so difficult. Conclusion: According to the all of this experimental results, the cast zirconia core produced from the remained parts of zirconia block was possible to use for all ceramic denture.

Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules

  • Huh, Jae-Hoon;Choi, Young-Hoon;Lee, Shin Haeng;Cheong, Sun Hee;Ahn, Ji Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.108-113
    • /
    • 2017
  • The use of aluminum-based coagulants in water pretreatment is being carefully considered because aluminum exposure is a risk factor for the onset of Alzheimer's disease. Lightly burned-dolomite kiln dust (LB-DKD) was evaluated as an alternative coagulant because it contains high levels of the healthful minerals calcium and magnesium. An organic pore forming agent (OPFA) was incorporated to prepare porous granules after OPFA removal through a thermal decomposition process. A spray drying method was used to produce uniform and reproducible spherical granules with low density, since fine dolomite particles have irregular agglomeration behavior in the hydration reaction. The use of fine dolomite powder and different porosity granules led to a visible color change in raw algae (RA) containing water, from dark green to transparent colorlessness. Also, dolomite powders and granules exhibited a mean removal efficiency of 48.3% in total nitrogen (T-N), a gradual increase in the removal efficiency of total phosphorus (T-P) as granule porosity increased. We demonstrate that porous dolomite granules can improve the settling time and water quality in summer seasons for the emergent treatment of excessive algal blooms in eutrophic water.

Magnetic Properties of NiZn-ferrite Synthesized from Waste Iron Oxide Catalyst (산화철 폐촉매로부터 합성된 NiZn- 페라이트의 자기적 특성)

  • Hwang, Yeon;Kwon, Soon-Kil;Lee, Hyo-Sook;Je, Hae-June;Park, Sang-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1162-1166
    • /
    • 2001
  • NiZn-ferrite was synthesized from waste catalysts, which were produced from styrene monomer process and buried underground as an industrial wastes, and its magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900$\^{C}$ and sintering at 1230$\^{C}$ for 5 hours. The intial permeability was measured and reflection loss was calculated from S-parameters for the composition of Ni$\_$x/Zn$\_$1-x/Fe$_2$O$_4$(x=0.36, 0.50, 0.66). NiZn-ferrite synthesized from waste iron oxide catalyst showed a feasibility for the use as electromagnetic wave absorber in X-band.

  • PDF

Characteristics of Cement Matrix/Mortar with CaO-based Activated-sludge (CaO원 활성슬러지를 혼입한 시멘트 경화체 및 모르타르의 특성)

  • Lee, Yong-Soo;Ryu, Seong-Lyong;Shin, Kwang-Ho;Chu, Yong-Sik;Kim, Young-Yup
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2017
  • CaO-based by-product, which consist of CaO, $SO_3$, $Al_2O_3$ and so on, has being used to raw materials of CaO compound. When It was applied to recycling water of remicon, concrete performance can be enhanced because hydration reaction of powder material is accelerated. In this study, activated-sludge, which was putted desulfurization gypsum of CaO-based in recycling water, was manufactured to verify effect of them, and then they was investigated by characteristics of cement matrix and mortar. As a results, they indicated reduction of setting time and high soundness in cement matrix, and acceleration of hydration reaction can be verified by XRD analysis. Also, it can be maintained good workability if water content by usage of desulfurization gypsum, which used for production of activated-sludge, was adjusted. In addition, it can be verified strength development by activated-sludge although cement content by usage of desulfurization gypsum was reduced.

Study on the Recovery Silver and Nanoparticles Synthesis from LTCC By-products of Lowly Concentrated Silver (저농도 은이 함유된 LTCC 전극공정부산물로부터 은 회수 및 나노입자 제조 연구)

  • Joo, Soyeong;Ahn, Nak-Kyoon;Lee, Chan Gi;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.232-239
    • /
    • 2018
  • In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.

Continuous Ethanol Fermentation Using Membrane Cell Recycle Fermentor (Membrane Cell Recycle Fermentor에 의한 에탄올 연속 발효)

  • 김태석;이석훈;손석민;권윤중;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 1991
  • Ethanol fermentation of glucose by a strain of Saccharomyces cereuisiae was studied in membrane recycle bioreactor, where the fermentation vessel was coupled with cross flow hollow fiber membrane. The cell recycle system controlled backflushing with fresh medium was proven to be effective in alleviating membrane fouling and allowing long term operation of high-cell continuous fermentation. Using 100 g/l initial glucose concentration, the maximum productivity of about 9 5 g/$l \cdot h$ has been achieved at dilution rate 2.5 $h^{-1}$ and bleed stream ratio 0.05 with the corresponding ethanol concentration of 35g/l and glucose conversion of 100%. Increasing the glucose concentration to 200 g/$l \cdot h$ resulted in an increase in ethanol concentration to 48 g/l and productivity to 120 g1l.h. Substrate conversion, however, was only 69%. This productivity was the highest value in the study, and about 38 fold more than that of batch culture and 17 fold more that of single stage continuous culture without cell recycling. No further increase in the productivity was obtained when the glucose concentration was increased reased to 300g/l.

  • PDF