• Title/Summary/Keyword: Ceramic pigment

Search Result 97, Processing Time 0.03 seconds

A study on the color analysis of the pigment by UV-Visible spectroscopy (분광분석기를 이용한 안료의 색상분석에 관한 연구)

  • Jung, Choong-Ho;Kang, Tae-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.515-521
    • /
    • 2010
  • In this research, we were prepared the glazed ceramic samples by the change of the pigment content and investigated to reveal the standardized color. The chemical composition of the pigment was analyzed using a ICP-OES. XRF mapping and UV-Vis spectroscopy were used to evaluate the color property and surface homogeneity. The color development was observed as a result of analyzing the pigment content and change of the color. The pigment content and the spectral reflection showed the relation of the inverse proportion and the standardized color which could be revealed through analysis data.

Synthesis and Characteristics of Blue Ceramic Pigments Using Electric Arc Furnace Dust (제강분진을 활용한 고온발색 청색무기안료 합성 및 특성에 관한 연구)

  • Son, Bo-Ram;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.184-189
    • /
    • 2014
  • Electric arc furnace dust (EAFD) is a solid waste generated by the steel-scrap recycling process. It mainly consists of zinc oxides (ZnO), alumina ($Al_2O_3$), iron oxides ($Fe_2O_3$), and silica ($SiO_2$). Here we report the preparation and characterization of blue ceramic pigments using EAFD powder as a starting material. $(Zn(EAFD),Co)Al_2O_4$ blue ceramic pigment was prepared by the solid-state reaction method. The color characteristics of the pigment obtained were compared with those of pure $CoAl_2O_4$. The new pigment was characterized using XRD, CIE-$L^*a^*b^*$ color-measurements, SEM, and EDX. The XRD analysis revealed that the $(Zn(EAFD),Co)Al_2O_4$ pigment was composed of mainly the spinel phase of $(Zn,Co)Al_2O_4$. The $Zn(EAFD)_{0.25}Co_{0.75}Al_2O_4$ pigments showed a vivid blue color with a $b^*$ value of -28.64 and a good glaze stability with a transparent glaze.

Aerobic Treatment of Pigment Wastewater using Ceramic Support Carrier (세라믹 담체를 이용한 안료폐수의 호기성처리)

  • Park, Yeong-Sik;An, Gap-Hwan
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2001
  • Wastewater from the pigment industry has high levels of organics and is known as hardly biodegradable. The objective of this study is to evaluate the applicability of aerobic fixed-bed boifilm reactor packed with ceramic support carrier for the pigment wastewater treatment. Orange 2(widely used azo pigment) adsorption experiment onto biofilm and activated sludge, and continuous treatment experiments were performed. In batch adsorption experiment, maximum adsorption quantity of biofilm was at least two times higher than that of activated sludge. In continuous experiment using aerobic fixed-bed biodilm reactor, the influent concentration of COD and Orange 2 were 75~500mg/${\ell}$(0.45~3.00kg COD/$m^3.day), 5~50mg/$\ell$(0.03~0.30kg Orange 2/$m^3$.day), respectively. At a COD loading rate 2.5kg COD/$m^3$.day and Orange 2 loading rate of 0.18kg Orange 2/$m^3$.day, removal efficiency of COD and Orange 2 were over 95%, 97%, respectively.

  • PDF

Synthesis of (Ni,Mg)Al2O4 Ceramic Nano Pigment by a Polymerized Complex Method (착체중합법을 이용한 (Ni,Mg)Al2O4 Cyan 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • Here, we report preparation of cyan ceramic nano-pigment for inkjet printing and the Ni substitutional effects on the cyan color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of nickel-based cyan ceramic nano-pigments. Various compositions of $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using the polymerized complex method. The powder was then preheated at $400^{\circ}C$ for 5 h and finally calcined at $1000^{\circ}C$ for 5 h. XRD patterns of $Ni_xMg_{1-x}Al_2O_4$ showed a single phase of the spinel structure in all the compositions. The particle sizes ranged from 20 to 50 nm in TEM observations. The characteristics of the color tones of $Ni_xMg_{1-x}Al_2O_4$ were analyzed by UV-Visible spectroscopy and CIE $L^*a^*b^*$ measurement. CIE $L^*a^*b^*$ measurement results indicate that the pigment color changes from light cyan to deep cyan due to the decrease of the $a^*$ and $b^*$ values with an increase of an Ni substitutional amount. In addition, the thermal stability and the binding nature of $Ni_xMg_{1-x}Al_2O_4$ are also discussed using TG-DSC and FT-IR results respectively.

Synthesis and Characterization of CoAl2O4 Glazed Blue Ceramic Ink for Ink-Jet Printing (Ink-jet 프린팅용 CoAl2O4 고화도 나노 무기 잉크 제조 및 프린팅 특성평가)

  • Lee, Ki-Chan;Yoon, Jong-Won;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Ink-jet printing technology has been widely attractive due to its facility for direct and fine printing on various substrates. Recent studies have focused on expanding the application of ink-jet printing technology from general consumer use and design companies to the prototype production of precision parts and parts manufacturing. The use of ink-jet printing technology in decorated tableware, tiles, and other ceramic products also has many advantages. The printing process is fast and can be adaptable to various kinds of objects because there is no direct contact point between the printer and the substrates to be printed. For application to ceramic product decoration, inks containing highly dispersed inorganic nano-pigments are required. Here we report the synthesis and characterization of blue $CoAl_2O_4$ nanopigment for ink-jet printing. Blue ceramic ink based on the obtained $CoAl_2O_4$ pigment was prepared by dissolving $CoAl_2O_4$ pigment in a mixed solution of ethylene glycol and ethanol with volume ratios of 7:3 and 8:2, respectively, to obtain the appropriate viscosity for ink-jet printing. The ink solution contained 15 wt% of $CoAl_2O_4$ pigment and Cetyltrimethyl ammonium bromide(CTAB) and Sodium dodecyl sulfate(SDS) as dispersive agents. The prepared blue ceramic ink was stably jetted and formed a sphere-shaped droplet from an ink-jet printer.

Synthesis and Formation Mechanism of Cobalt Doped Willemite Blue Pigments (Co-Doped Willemite 파란색 안료의 합성과 생성기구)

  • Hwang, Dong-Ha;Han, Kyong-Sop;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.603-607
    • /
    • 2010
  • Turquoise blue pigment of Vanadium-zircon blue (DCMA number 14-42-2), which was already commercialized, was stable to be reproduced but insufficient to give strong blue. However, it possible to obtain more intense blue by partially substituting cobalt ions into the willemite($Zn_2SiO_4$) lattice classified into DCMA number 7-10-2 for blue ceramic pigment. By the composition of willemite $Co_xZn_{2-x}SiO_4$(X=0.01, 0.03, 0.05, 0.07, 0.09 mole), this study used reagent grade zinc oxide, cobalt oxide and silicon dioxide as starting materials, carrying out the synthesis with solid reaction method by adding $H_3BO_3$ as a mineralizer. The firing temperature was between $1200^{\circ}C$ and $1400^{\circ}C$. The characteristics of synthesized pigment were analyzed by X-ray diffraction, Raman spectroscopy and SEM and the characteristics of color tones were analyzed by UV-Vis spectroscopy and CIE-$L^*a^*b^*$ measurement. As a result, the optimal composition was $Zn_{1.95}Co_{0.05}$ with 1wt% of $H_3BO_3$ as a mineralizer and firing condition was $1350^{\circ}C$/3 h. $L^*a^*b^*$ value was 29.25, 41.03, -59.93 for on glaze pigment and 37.03, 36.41, -60.03 for under glaze pigment.

Color Formation Mechanism of Ceramic Pigments Synthesized in the TiO2-SnO-ZnO Compounds

  • Kim, Soomin;Kim, Ungsoo;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.368-375
    • /
    • 2018
  • This study deals with the color formation of ceramic pigment in the $TiO_2$-SnO-ZnO system. We designed compounds to control the color formation depending on the composition using the Design of Experiment. The color coordinate values of synthesized pigments, $L^*a^*b^*$ were measured and statistically analyzed color for changing elements depending on its composition. The relationship between the major crystalline phases and chromaticity was examined using XRD, and the oxidation states of each element were analyzed by XPS. The synthesized pigments based on the compound design exhibited various color changes ranging from yellow-orange to green-blue and brown. The statistical analysis on the spectrophotometer results shows that $a^*$ and $b^*$ values decreased with $TiO_2$ content, and increased with SnO content. Yellow-orange color was detected with the main peak of SnO, and the green-blue color developed with the main peak of $Zn_2TiO_4$. The $a^*$ and $b^*$ values increased with increased SnO peak intensity, and decreased with increased $Zn_2TiO_4$ peak intensity. The results revealed that pigment color formation was influenced by changes in the main crystalline phases and crystalline intensity. However, XPS analysis of the oxidation states of each element showed little correlation with the pigment chromaticity result.

Synthesis and Coloration Control of α-FeOOH Rods using Closed System

  • Yu, Ri;Lee, NaRi;Kim, YooJin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.298-301
    • /
    • 2019
  • This paper details the synthesis of α-FeOOH (goethite) rods through the reaction of iron (III) nitrate with KOH as a strong base, and shape control of the particles for use as a yellow inorganic pigment. The crystal phase of the α-FeOOH crystal with OH content according to the addition of KOH and the change in morphology were investigated. The optical properties varied with the aspect ratios, and the yellowness increased with increasing aspect ratio. However, the enhanced chromaticity characteristics reversed beyond a certain critical aspect ratio. Thus, the relative optimal aspect ratio of the α-FeOOH rods as a vivid yellow inorganic pigment was derived. The morphology and coloration of the prepared rods were investigated in detail using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy, and CIE Lab color parameter measurements.

A Study on the NiO-doped Willemite Pigments (Ni-doped Willemite계 청색안료에 관한 연구)

  • Lee, Chi-Youn;Lee, Hyun-Soo;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.134-140
    • /
    • 2011
  • To study the effect of color development of Ni-doped willemite blue pigments, five batches of compositions were prepared and fired at $1350^{\circ}C$/hold for 1 h. When Ni was substituted for ZnO by 0.03 mole the optimum result were obtained. Then they were fired at $1300^{\circ}C$ and held for 1, 2, 4 and 6 h respectively for the purpose sake. XRD, Raman spectroscopy, FT-IR, UV-vis were used to analyze the results of experiment. The substitution of 0.03mole Ni for Zn was most optimum and which produced good willemite at the temperature of $1300^{\circ}C$, holding for 6 h. In ceramic arts, cobalt has been used for blue coloring, in most cases, despite of its high cost. If the low cost Ni-doped willemite blue pigments supplies for them with stable and multiple shades of blue pigment, using NiO at high temperature, it would provide various blues for ceramic wares.

Formulation and Evaluation of Glass-Ceramic Ink for Digital Ink-jet Printing (디지털 프린팅용 글래스-세라믹 복합 잉크 제조 및 특성 평가)

  • Kwon, Jong-Woo;Lee, Jong-Heun;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.583-589
    • /
    • 2017
  • Ceramic ink-jet printing has become a widespread technology in ceramic tile and ceramicware industries, due to its capability of manufacturing products on demand with various designs. Generally, thermally stable ceramic inks of digital primary colors(cyan, magenta, yellow, black) are required for ink-jet printing of full color image on ceramic tile. Here, we synthesized an aqueous glass-ceramic ink, which is free of Volatile organic compound(VOC) evolution, and investigated its inkjet printability. $CoAl_2O_4$ inorganic pigment and glass frit were dispersed in aqueous solution, and rheological behavior was optimized. The formulated glass-ceramic ink was suitably jetted as single sphere-shaped droplets without satellite drops. After ink-jet printing and firing processes, the printed glass-ceramic ink pattern on glazed ceramic tile was stably maintained without ink spreading phenomena and showed an improved scratch resistance.