• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.025 seconds

Fabrication of Agglomerated Cr$_2$O$_3$ Powder for Plasma Spray Coating by Spray Drying Process (분무 건조법에 의한 프라즈마 용사를 Cr$_2$O$_3$조립 분말 제조)

  • 이동원
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.28-34
    • /
    • 1998
  • Plasma sprayed ceramic coatings are widely used in various industrial fields to improve their properties or to reduce the production cost. The ceramic powders for plasma spray coating have been mainly manufactured by spray drying or fused+crushed process. In this study, chromium oxide which has better mechanical properties than those of the other ceramic was selected and agglomerated chromium oxide powders for plasma spray coating were produced by spray drying process with a various processing condition. The large hollow powders and the harsh surfaced powders are formed at high slurry feed rate more than 163 g/min. and low binder concentration less than 2wt%, respectively. These powders cause the considerable decrease of flowability and apparent density. The powders produced by spray drying process have the spherical shape with the mean size of 45 ${\mu}m$, but these are shown lower apparent density and flowability than the powders produced by fused+crushed powders. The plasma spray coated layers by spray dried powders are shown a different microstructure with that by fused+crushed powders in porosity shape, but their properties such as density, hardness and bond strength are similar.

  • PDF

Sliding Wear of Alumina-silicon Carbide Nanocomposites

  • Kim, Seung-Ho;Lee, Soo-Wohn;Kim, Yun-Ho;Riu, Doh-Hyung;Tohru Sekino;Koichi Niihara
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1080-1084
    • /
    • 2001
  • Alumina-based nanocomposites have improved mechanical properties such as hardness, fracture toughness and fracture strength compared to monolithic ceramics. In this study, alumina with 5 vol% of nanosized SiC was sintered by a hot pressing technique at 1600$\^{C}$, 30 MPa for 1h in an argon gas atmosphere. Microstructures and mechanical properties in alumina-SiC nanocomposite were investigated. Moreover, tribological properties in air and water were compared each other. Relationships of wear properties with mechanical properties such as hardness, strength, and fracture toughness as well as microstructure were studied. Based on experimental results it was found that nanosized SiC retarded grain growth of matrix alumina. Mechanical properties such as hardness, fracture toughness and strength were improved by the addition of nanosized SiC in alumina. Improved mechanical properties resulted in increased sliding wear resistance. Tribological behavior of nanocomposites in water seemed to be governed by abrasive wear.

  • PDF

Structural and Optical Properties of SiO2 Thick Films by Aerosol Deposition Process (에어로졸 데포지션 법을 이용하여 제조한 SiO2 후막의 구조 및 광학 특성)

  • Jang, Chan-Ik;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.6-12
    • /
    • 2013
  • Aerosol deposition(AD) coating that enable fabricate films at low temperature have begun to be widely researched for the integration of ceramics as well to realize high-speed deposition rates. For application of ceramic thick film by AD to display and electronic ceramic industry, fabrication of dense structure with a no cracking is required. In this study, to fabricate dense ceramic thick film, the effect of crystal phase of starting powder was investigated. For this study, amorphous and crystalline $SiO_2$ powders were used as starting powders. Two types of $SiO_2$ powders were deposited on glass substrate by AD. In the case of amorphous $SiO_2$ powder, the deposited films had extremely incompact and opaque layer, irrespective of particle size. In contrast to amorphous powder, in the case of crystalline powder, porous structure layer and dense microstructure with no cracking layer were fabricated depending on the particle size. The optimized starting powder size for dense coating layer was $1{\sim}2{\mu}m$. The transmittance of film reached a maximum of 76% at 800 nm.

Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining (탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능)

  • Sung, Jin-Woo;Kim, Nam-Kyung;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.

Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property (W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성)

  • Oh, Gyu-Sang;Lee, Sung-Min;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.293-299
    • /
    • 2020
  • W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 ㎛ and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Waste to shield: Tailoring cordierite/mullite/zircon composites for radiation protection through controlled sintering and Y2O3 addition

  • Celal Avcioglu;Recep Artir
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2767-2774
    • /
    • 2024
  • In this study, investment casting shell waste successfully utilized to produce cordierite/mullite/zircon composites. Green pellets, consisting of investment casting shell waste, alumina, and magnesia, were prepared and sintered at temperatures between 1250 and 1350 ℃. The influence of the sintering temperature on the crystalline phase composition, densification behavior, flexural strength, microstructure, and radiation shielding properties of the cordierite/mullite/zircon composites is investigated. Phase analysis showed that characteristic cordierite peaks appear at 1250 ℃, but the complete conversation of silica from investment casting shell waste into cordierite requires a sintering temperature of at least 1300 ℃. Notably, the cordierite/mullite/zircon composite sintered at 1350 ℃ exhibited a sixfold increase in flexural strength compared to the ceramic composite directly fabricated from investment casting shell waste at the same sintering temperature. Furthermore, the effect of Y2O3 addition on composites' radiation shielding properties is investigated. The results show that the Y2O3 addition improves densification behavior, enhancing the shielding capabilities of the composites against fast neutron and gamma radiation. Our findings suggest that the developed ceramic composites show significant potential for gamma-ray and neutron shielding applications.

Microstructure and Superconducting Properties of (Bi,Pb)-Sr-Ca-Cu-O-(Ag, Au, Mg) Composites ((Bi,Pb)-Sr-Ca-Cu-O-(Ag, Au, Mg) 복합체의 미세구조와 초전도 특성)

  • 이민수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.447-454
    • /
    • 2003
  • Samples were prepared by the solid-state reaction method. The nominal composition of the samples was B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+{delta}$ prepared from powder of B $i_2$ $O_3$, PbO, SrC $O_3$, CaC $O_3$, and CuO. They were pulverized, mixed with AgO, A $u_2$ $O_3$and MgO of 50 wt%. Finally, they were sintered at 820 to 85$0^{\circ}C$ in air. The structural characteristics, the microstructure of surface and the critical temperature with respect to the each samples were analyzed by XRD, $T_{c}$, SEM and EDS respectively. It was found that the the critical temperature of the silver oxide additive samples (99.58 K) is higher than those of gold or magnesium oxides additive samples, but all those values are lower than that of pure Bi-2223 phase. The microstructure of surface showed the tendency which the AgO additive samples become more minuteness than A $u_2$ $O_3$ and MgO additive samples.s.samples.s.

A STUDY ON THE MICROSTRUCTURE OF IPS EMPRESS CERAMICS ACCORDING TO THE HEAT TREATMENT AND SPRUE TYPE (주입선 및 열처리에 따른 IPS Empress 도재의 미세구조에 관한 연구)

  • Dong, Jin-Keun;Oh, Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.772-785
    • /
    • 1998
  • This study was undertaken to clarify the microstructure of the different IPS Empress ingots by etching and to observe the change of leucite crystal structure according to subsequent heat treatment and the crystal distribution according to sprue types(${\phi}2.8mm$, single sprue; ${\phi}1.8mm$, double sprue) by scanning electron microscopy. IPS Empress T1, O1 ingots used for staining technique, and Dentin(A2) ingots used for layering technique were selected for this study. To observe the microstructures of these ingots before pressing, the specimens were prepared in splinters($3{\times}3{\times}3mm$) taken from the original ingots. And to estimate crystal distribution and microstructural change by sprue type and subsequent heat treatment. the specimens($3{\times}3{\times}3mm$) were heat-pressed through the two types of sprues with different diameters and numbers, and all specimens were fired according to the recommended firing schedule. The observed surface was ground with waterproof papers($#800{\sim}#1800$) on the grind polisher and was cleaned ultrasonically. All specimen were etched with 0.5% hydrofluoric acid. After etching, the surface was treated by ion sputter coating for SEM observation at an accelerating voltage of 20kV. In all specimens, the central area of ground surface was observed because there was less difference in microstructure between the peripheral area and the central area. The results were as follows ; 1. In the microstructure according to the ingot type, there was a wide difference between the staining (T1,O1) and layering(Dentin A2) ingots, but there was not a considerable difference between the T1 ingot and the O1 ingot for staining technique. 2. In all specimens, the crystal dispersion of IPS Empress ceramic using double sprue was significantly more scattered than that of IPS Empress ceramic using single sprue. The degree of scattering was strongest in the Dentin(A2) specimen and weakest in the O1 ingot. 3. In the microstructural change according to the subsequent heat treatment, all of ingots had some microcracks in the inside of the leucite crystal and the glass matrix after pressing. The inner splinters of the leucite crystal became smaller, and more microcracks occurred in the glass matrix due to increasing heat treatment times. 4. The size of leucite crystals varied from $1{\mu}m\;to\;5{\mu}m$. The mean size of mature crystals was about $5{\mu}m$. The form of the crystal was similar to a circle when it was smaller and similar to an ellipse when it was larger.

  • PDF

The Microstructure Control of SiC Ceramics Containing Porcelain Scherben (자기파를 함유한 SiCwlf 세라믹스의 미세구조 제어)

  • 이성희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.626-634
    • /
    • 1995
  • The SiC-porcelain powder mixtures containing 51.9wt% SiC are produced as by-products from the surface abrasion process of porcelain cores. This raw powders were used as starting materials for the synthesis of SiC containing ceramics. The specimen, which was fired at 135$0^{\circ}C$ from raw powders, had SiC, $Al_{2}O_{3}$, , cristobalite, mullite as crystalline phases, and the fractured microstructure showed dispersed SiC crystalline particles almost wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts wetted with glassy matrix and spherical pores. Although the oxidation of SiC containing powder compacts started at the range of 600~80$0^{\circ}C$ form the analysis of weight gain, the presence of $SiO_{2}$ crystallien phase and cristobalite was confirmed at 100$0^{\circ}C$ by XRD analysis. Mullitization of specimens was accelerated by preheating before the final firing. The specimen sintered at 135$0^{\circ}C$ after 100$0^{\circ}C$ preheating consisted of SiC, cristobalite, mullite as crystalline phases, and revealed 2.24g/$cm^{3}$ bulk density, 11.73% water adsorption, porous microstructure with small amount of glassy phase. SiC contents of specimens, which was 51.9 wt% in the raw powders, reduced to 37~22 wt% after firing at 135$0^{\circ}C$ depending on the preheating condition.

  • PDF